

Landwirtschaftskammer Rheinland-Pfalz Abteilung Weinbau

und

Wissenschaftlicher Arbeitsausschuss FTIR-Kalibrierung für die amtliche Weinuntersuchung

Laborvergleichsuntersuchung "Wein 2020"

Teil 1
Durchführung und Ergebnisse der Untersuchungen insbesondere eines Schaumweins (FT20P01)

Stand: 02.03.2021

Auswertung: Dr. Reinhard Ristow

Albert-Schweitzer-Str. 6a

67346 Speyer

Laborvergleichsuntersuchung "Wein 2020"

Inhaltsverzeichnis

1	Einleitung	7
2	Durchführung der Laborvergleichsuntersuchung	8
2.1	Untersuchungsmaterial	8
2.1.1	Auswahl des Untersuchungsmaterials	8
2.1.2	Angaben zu den Prüfgütern	8
2.1.3	Zusammenfassung der Ergebnisse der Homogenitätsprüfungen	9
2.1.4	Ergebnisse der Homogenitätsprüfung für das Prüfgut FT20P01	10
2.1.5	Verteilung des Untersuchungsgutes	13
2.2	Informationen zur Behandlung und Untersuchung der Proben	13
2.3	Ergebnisübermittlung und Ergebnisbehandlung	15
2.4	Ergebnisauswertung	17
2.4.1	Bewertung der Laborleistung	18
2.4.2	Untere Grenze des Anwendungsbereiches	19
2.4.3	Spezielle Regelungen für einzelne Parameter	19
2.4.3.	1 Vorhandener Alkohol	19
2.4.3.2	2 Gesamtalkohol, Gesamtextrakt und Zuckerfreier Extrakt	20
2.4.3.3	3 Vergärbare Zucker	20
2.4.3.4	4 Flüchtige Säure	21
2.4.3.	5 Acetat (als Essigsäure)	22
2.4.3.6	6 Gesamte Äpfelsäure	22
2.4.3.7	7 Reduktone, Freie und Gesamte Schweflige Säure	22
3	Gesamtergebnis der Untersuchungen	24
3.1	Regeln zur Bewertung des Gesamtergebnisses	24
3.2	Gesamtergebnis für das Schaumweinprüfgut (FT20P01)	26
4	Anmerkungen zu den Untersuchungsergebnissen mit	
	herkömmlichen Methoden für einzelne Parameter bei allen Prüfgüter	rn28
4.1	Weinsäure	28
4.2	Flüchtige Säure und Acetat	29
4.2.1	Flüchtige Säure	29
4.2.2	Acetat (als Essigsäure) [g/L]	30
4.3	Gesamte Äpfelsäure und L-Äpfelsäure	31
4.4	Gesamte Milchsäure und L-Milchsäure	32
4.5	Schweflige Säure und Reduktone	33
4.5.1	Reduktone	33
4.5.2	Freie Schweflige Säure	34
4.5.3	Gesamte Schweflige Säure	35
5	Ergebnisse der FTIR-Untersuchungen	35
5.1	Spezielle Gegebenheiten für die FTIR-Ergebnisse einzelner Parameter	35
5.1.1	Gesamtalkohol	35
5.1.2	Kodierung der Analysenmethode für Gesamtextrakt und Zuckerfreien Extrakt	36
5.1.3	Besondere Auswahl der Zielstandardabweichung für einzelne Parameter	36

5.1.4	Vergärbare Zucker	37
5.2	Gesamtergebnis der FTIR-Untersuchungen	37
5.3	Gesamtergebnis der FTIR-Untersuchungen für das Prüfgut FT20P01	39
5.4	Gegenüberstellung herkömmlicher und FTIR-Ergebnisse für alle Prüfgüter	42
6	Ergebnisse zu den einzelnen Parametern	43
6.1	Berechnete Parameter	43
6.2	Darstellung der analytischen Ergebnisse	43
6.2.1	Aufbau der Tabellen der Laborergebnisse	44
6.2.2	Aufbau der Tabelle der Deskriptiven Ergebnisse	44
6.2.3	Aufbau der Tabelle der Angaben zu den Analyseverfahren	44
6.2.4	Aufbau der Graphiken	45
6.3	Relative Dichte 20 °C/20 °C	46
6.3.1	Herkömmliche Laborergebnisse	46
6.3.2	FTIR-Laborergebnisse	47
6.3.3	Deskriptive Ergebnisse	49
6.3.4	Angaben zu den Analyseverfahren	49
6.4	Gesamtalkohol [g/L]	51
6.4.1	Herkömmliche Laborergebnisse	51
6.4.2	FTIR-Laborergebnisse	52
6.4.3	Deskriptive Ergebnisse	53
6.4.4	Angaben zu den Analyseverfahren	53
6.5	Vorhandener Alkohol [g/L]	55
6.5.1	Herkömmliche Laborergebnisse	55
6.5.2	FTIR-Laborergebnisse	57
6.5.3	Deskriptive Ergebnisse	58
6.5.4	Angaben zu den Analyseverfahren	58
6.6	Gesamtextrakt [g/L]	60
6.6.1	Herkömmliche Laborergebnisse	60
6.6.2	FTIR-Laborergebnisse	61
6.6.3	Deskriptive Ergebnisse	62
6.6.4	Angaben zu den Analyseverfahren	63
6.7	Zuckerfreier Extrakt [g/L]	64
6.7.1	Herkömmliche Laborergebnisse	64
6.7.2	FTIR-Laborergebnisse	65
6.7.3	Deskriptive Ergebnisse	66
6.7.4	Angaben zu den Analyseverfahren	66
6.8	Vergärbare Zucker [g/L]	68
6.8.1	Herkömmliche Laborergebnisse	68
6.8.2	FTIR-Laborergebnisse für Vergärbare Zucker	69
6.8.3	FTIR-Laborergebnisse für Vergärbare Zucker(S)	71
6.8.4	Deskriptive Ergebnisse	72
6.8.5	Angaben zu den Analyseverfahren	72

6.9 Glucose [g/L]	75
6.9.1 Herkömmliche Laborergebnisse	75
6.9.2 FTIR-Laborergebnisse	76
6.9.3 Deskriptive Ergebnisse	77
6.9.4 Angaben zu den Analyseverfahren	77
6.10 Fructose [g/L]	79
6.10.1 Herkömmliche Laborergebnisse	79
FTIR-Laborergebnisse	80
6.10.2 Deskriptive Ergebnisse	81
6.10.3 Angaben zu den Analyseverfahren	81
6.11 Glycerin [g/L]	83
6.11.1 Herkömmliche Laborergebnisse	83
6.11.2 FTIR-Laborergebnisse	83
6.11.3 Deskriptive Ergebnisse	84
6.11.4 Angaben zu den Analyseverfahren	85
6.12 pH-Wert	86
6.12.1 Herkömmliche Laborergebnisse	86
6.12.2 FTIR-Laborergebnisse	87
6.12.3 Deskriptive Ergebnisse	88
6.12.4 Angaben zu den Analyseverfahren	88
6.13 Gesamtsäure [g/L]	90
6.13.1 Herkömmliche Laborergebnisse	90
6.13.1 FTIR-Laborergebnisse	91
6.13.2 Deskriptive Ergebnisse	93
6.13.3 Angaben zu den Analyseverfahren	93
6.14 Weinsäure [g/L]	95
6.14.1 Herkömmliche Laborergebnisse	95
6.14.2 FTIR-Laborergebnisse	95
6.14.3 Deskriptive Ergebnisse	97
6.14.4 Angaben zu den Analyseverfahren	97
6.15 Flüchtige Säure [g/L]	99
6.15.1 Herkömmliche Laborergebnisse	99
6.15.2 FTIR-Laborergebnisse	99
6.15.3 Deskriptive Ergebnisse	101
6.15.4 Angaben zu den Analyseverfahren	101
6.16 Acetat (als Essigsäure) [g/L]	103
6.16.1 Herkömmliche Laborergebnisse	103
6.16.2 Weitere herkömmliche und FTIR-Laborergebnisse	103
6.16.3 Deskriptive Ergebnisse	104
6.16.4 Angaben zu den Analyseverfahren	104

7	Alphabetisches Verzeichnis der Teilnehmer	135
6.24	Sensorische Befunde	133
6.23.3	9	131
6.23.2		131
6.23.1	•	130
6.23	Überdruck [bar]	130
6.22.3	3	129
6.22.2	Deskriptive Ergebnisse	129
6.22.1	Laborergebnisse	129
	Kohlendioxid (CO ₂) in g/L	129
6.21.5		128
6.21.4	9	127
6.21.3	,	127
6.21.2	,	126
6.21.1		124
6.21	Gesamte Schweflige Säure [mg/L]	124
6.20.5	1 3	120
6.20.4	,	120
6.20.3	,	119
6.20.2	,	119
6.20.1	71	118
6.20	Freie Schweflige Säure [mg/L]	118
6.19.3	,	116
6.19.2		116
6.19.1	•	115
6.19	Reduktone [mg/L]	115
6.18.5	,	112
6.18.4		112
6.18.3	•	111
6.18.2		110
6.18.1	Herkömmliche Laborergebnisse Gesamte Milchsäure	110
6.18	Gesamte Milchsäure und L-Milchsäure [g/L]	110
6.17.5	Angaben zu den Analyseverfahren	107
6.17.4	Deskriptive Ergebnisse	107
6.17.3	FTIR-Laborergebnisse Gesamte Äpfelsäure	106
6.17.2	Laborergebnisse L-Äpfelsäure	105
6.17.1	Herkömmliche Laborergebnisse Gesamte Äpfelsäure	105
6.17	Gesamte Äpfelsäure und L-Äpfelsäure [g/L]	105

1 Einleitung

Eine Laborvergleichsuntersuchung dient der Sicherung der Qualität von Analysenergebnissen. Sie ermöglicht es den teilnehmenden Labors, ihre eigenen Analysendaten mit den Analysenergebnissen anderer Labors zu vergleichen. Die Landwirtschaftskammer Rheinland-Pfalz veranstaltet jährlich eine Laborvergleichsuntersuchung. Diese vermittelt der Landwirtschaftskammer einen Überblick über die Qualität der rechtlich für die amtliche Qualitätsweinprüfung vorgeschriebenen Analytik. Die Laborvergleichsuntersuchung wird in Kooperation mit dem "Wissenschaftlichen Arbeitsausschuss FTIR-Kalibrierung in der amtlichen Weinanalytik" durchgeführt.

Die Landwirtschaftskammer Rheinland-Pfalz erfüllt mit dem Angebot der Laborvergleichsuntersuchung eine Aufgabe, die ihr in der Verwaltungsvorschrift des Ministeriums für Wirtschaft, Verkehr, Landwirtschaft und Weinbau vom 10. Dezember 2018 zur Durchführung der Qualitätsweinprüfungen zugewiesen wurde. Laboratorien mit einer Zulassung zum Einsatz des Verfahrens der Fourier-Transform-Infrarotspektroskopie im mittleren Infrarot (FTIR-Verfahren) in der amtlichen Qualitätsweinanalyse ist auferlegt, an speziellen Laborvergleichsuntersuchungen mit dieser Methode teilzunehmen. Die FTIR-Laborvergleichsuntersuchung umfasst über die Parameter der amtlichen Qualitätsweinanalyse hinaus die üblicherweise mit diesem Verfahren bestimmten Parameter.

Die Landwirtschaftskammer hat mit Schreiben vom Februar 2020 die bei ihr zugelassenen Laboratorien zur Teilnahme an der Laborvergleichsuntersuchung eingeladen, die in dieser lediglich Untersuchungen im Umfang der amtlichen Qualitätsweinanalyse mit herkömmlichen Methoden durchführen. Soweit Laboratoren eine Zulassung zum Einsatz des FTIR-Verfahrens in der amtlichen Qualitätsweinanalyse haben oder aufgrund vorangegangener Laborvergleichsuntersuchungen bekannt war, dass diese an den umfassenderen Untersuchungen unter Einsatz des FTIR-Verfahrens teilnehmen, erfolgte die Einladung zu derselben Zeit durch den Koordinator der Laborvergleichsuntersuchung.

Die Möglichkeit zur Teilnahme an der Laborvergleichsuntersuchung besteht über das Land Rheinland-Pfalz hinaus für alle, die Qualitätsweinanalysen für die amtliche Qualitätsweinprüfung durchführen oder das FTIR-Verfahren in der Weinanalytik einsetzen.

Zur Laborvergleichsuntersuchung stand ein Untersuchungsmaterial (Prüfgut) allen Teilnehmern zur Verfügung, während die Teilnehmer an den FTIR-Untersuchungen vier weitere Prüfgüter erhielten. Die Teilnehmer an den FTIR-Untersuchungen sollen über die FTIR-Untersuchungen hinaus im Rahmen ihrer Möglichkeiten an mindestens zwei Prüfgütern zusätzlich mit anderen Methoden die üblicherweise mit dem FTIR-Verfahren erfassten Parameter bestimmen.

Die Durchführung und die Ergebnisse dieser Laborvergleichsuntersuchung werden in einem mehrteiligen Bericht beschrieben. Der vorliegende Teil 1 umfasst die allgemeinen organisatorischen Angaben zur Durchführung, behandelt für einzelne Parameter prüfgutübergreifende Beobachtungen und dokumentiert die Ergebnisse für das Prüfgut Schaumwein (FT20P01) im Detail.

2 Durchführung der Laborvergleichsuntersuchung

2.1 Untersuchungsmaterial

2.1.1 Auswahl des Untersuchungsmaterials

Als Untersuchungsmaterial (Prüfgüter) sollen Weine unterschiedlicher Herkunft, Herstellung und Zusammensetzung verwendet werden. Der gleichzeitige Einsatz mehrerer Prüfgüter ermöglicht die Berücksichtigung verschiedener Auswahlkriterien und macht den Einfluss probenspezifischer Matrixeffekte bzw. Mängel einer eventuellen Slope-Interzept-Korrektur auf die FTIR-Untersuchungen besser erkennbar. Das Untersuchungsmaterial soll – zumindest im mehrjährigen Turnus – den üblichen Konzentrationsbereich der Hauptkomponenten wie Alkohol-, Zuckerund Säuregehalt abdecken. Die Verwendung von Proben unterschiedlicher Weinarten dient hierbei insbesondere der Abdeckung der aufgrund der Weinart unterschiedlichen Gehalte an Äpfelsäure und Milchsäure. Weiterhin soll im Hinblick auf den Einfluss unterschiedlicher Herkunft, Rebsorten und Herstellungsverfahren mindestens ein Wein ausländischer Herkunft sein.

Nach der oben genannten Verwaltungsvorschrift müssen bei der Landwirtschaftskammer Rheinland-Pfalz zugelassene Laboratorien für die Parameter, zu deren Untersuchung sie zugelassen sind, in einem Turnus von drei Jahren die Teilnahme an einer Laborvergleichsuntersuchung nachweisen. Um den genannten Kriterien für die Auswahl des Untersuchungsgutes und den Vorgaben der Verwaltungsvorschrift auch für Teilnehmer im Umfang der amtlichen Qualitätsweinanalyse zu genügen, wird als allen Teilnehmern zur Verfügung gestelltes Prüfgut im Turnus von drei Jahren jeweils ein Weißwein, ein Rotwein und ein schäumendes Weinerzeugnis, in der Regel ein Perlwein verwendet. Nachdem im Jahr 2018 ein Weißwein und im Jahr 2019 ein Rotwein als Prüfgut für alle Teilnehmer eingesetzt wurden, war in diesem Jahr ein schäumendes Erzeugnis auszuwählen.

2.1.2 Angaben zu den Prüfgütern

Stand: 02.03.2021

Für die Durchführung der Untersuchungen wurde das Probenmaterial (Prüfgüter) in diesem Jahr sowohl als lose Ware als auch verkaufsfertig aus gewerblicher Herstellung bezogen. Mindestens ein Wein sollte einen erhöhten Gehalt an Flüchtiger Säure aufweisen. Als Besonderheit wurde als schäumendes Erzeugnis ein Schaumwein ausgewählt. Im Übrigen wurde eine möglichst große Spanne und gleichmäßige Staffelung der Restzuckergehalte angestrebt, während die Gesamtsäuregehalte nur eine geringe Spanne aufweisen. Schließlich sollte wie üblich ein Erzeugnis aus dem Ausland stammen. Die Proben für die Teilnehmer an den FTIR-Untersuchungen wurden als FT20LnnP01 bis FT20LnnP05 kodiert. Hierbei vertreten die Buchstaben "Lnn" eine Teilnehmernummer, die bereits bei der Anmeldung vergeben wird. Sie dient der eindeutigen Identifizierung von Rohdaten der FTIR-Untersuchung. Bei der Beschreibung der Prüfgüter, der Dokumentation und Besprechung der Ergebnisse entfällt dieser Teil der Probenkodierung. Folgende Prüfgüter wurden eingesetzt:

FT20P01: Als Prüfgut wurde ein in 0,75 L-Sektflaschen gefüllter weißer Qualitätsschaumwein mit der Geschmacksangabe 'trocken' aus der laufenden Produktion einer Sektkellerei eingesetzt. Eine Beeinflussung der Zusammensetzung im Hinblick auf den Einsatz in der Laborver-

gleichsuntersuchung hat daher nicht stattgefunden. Analytische Kerndaten waren ein Gehalt an Vorhandenem Alkohol von 84 g/L, 24,5 g/L Restzucker und 5,8 g/L Gesamtsäure.

FT20P02: 2018er Spanischer Rotwein aus der Region La Mancha. Der als lose Ware erhaltene Wein wurde bis auf ein Nachschwefeln unverändert in 0,375 L-Sektflaschen gefüllt. Analytische Kerndaten waren: Vorhandener Alkohol 98 g/L, Restzucker 31 g/L, Gesamtsäure 5,3 g/L.

FT20P03: 2019er Rheinhessen, Portugieser Weißherbst, trocken. Der Grundwein mit einem Restzuckergehalt von rund 0,5 g/L, einem Gehalt an Vorhandenem Alkohol von 92,5 g/L und einem Gesamtsäuregehalt von 3,3 g/L wurde mit Süßreserve auf einen Zielwert für den Restzucker von 6,2 g/L dosiert und durch Zusatz von 0,5 g/L Äpfelsäure der Gesamtsäuregehalt auf 3,9 g/L erhöht. Die Abfüllung erfolgte in 0,33 L-Bierflaschen.

FT20P04: 2017er Spätburgunder Rotwein von der Ahr, der in 0,375 L-Bordeauxflaschen abgefüllt von einer Genossenschaft bezogen und unverändert als Prüfgut eingesetzt wurde. Analytische Kerndaten laut amtlicher Prüfanalyse: Vorhandener Alkohol 96,4 g/L, Restzucker 12,7 g/L und Gesamtsäure 5,2 g/L.

FT20P05: 2018er Rheinhessen, diverse Rebsorten, Auslese, süß aus gewerblicher Produktion in 0,25 L-Portionsflaschen. Unverändert als Prüfgut verwendet. Laut Voranalyse wies das Prüfgut folgende Kerndaten auf: Vorhandener Alkohol 85,5 g/L, Restzucker 56,0 g/L, Gesamtsäure 5,2 g/L.

Die vorstehenden Angaben zur Zusammensetzung entstammen den während der Produktion bzw. Probenauswahl erstellten Analysen. Sie sind als orientierende Angaben zu betrachten. Die Voruntersuchungen ergaben bei allen Prüfgütern einen bestimmbaren Gehalt an Reduktonen, worauf in der Anlage zur Durchführung der Untersuchungen mit herkömmlichen Methoden hingewiesen wurde. Dieser Sachverhalt war bei einer jodometrischen Bestimmung der Freien und Gesamten Schwefligen Säure zu beachten.

2.1.3 Zusammenfassung der Ergebnisse der Homogenitätsprüfungen

Die Homogenitätsprüfungen wurden von allen Prüfgütern bestanden. Es waren lediglich einzelne abweichende Messwerte als Ausreißer auszuschließen und keine Korrektur von Trends der Messdaten erforderlich. Die Quotienten s_r/s_{Ziel} aus der Wiederholstandardabweichung (s_r) und der Zielstandardabweichung (s_{ziel}) lagen mit Ausnahme der FTIR-Messergebnisse für Äpfelsäure und geringer Gehalte an der unteren Grenze der Anwendbarkeit der jeweiligen Analysenmethoden unter 0,5. Die Ergebnisse der Varianzanalysen waren damit beweiskräftig. Eine Inhomogenität konnte durch ein signifikantes bzw. hochsignifikantes Ergebnis der Varianzanalyse nur bei einzelnen Parametern nachgewiesen werden. Die weiteren Prüfungen werden jeweils bei der Behandlung der Ergebnisse der Homogenitätsprüfung für die einzelnen Prüfgüter besprochen, für das Prüfgut FT20P01 im folgenden Abschnitt 2.1.4. Zusammenfassend ergaben die Homogenitätsprüfungen, dass die Prüfgüter auch bei geringer Inhomogenität für die Verwendung in der Laborvergleichsuntersuchung geeignet waren.

2.1.4 Ergebnisse der Homogenitätsprüfung für das Prüfgut FT20P01

Aus der Gesamtlieferung von 84 Kartons mit je 6 Flaschen wurden nach deren Nummerierung aus 12 zufällig ausgewählten Kartons jeweils zwei Flaschen entnommen, von denen jeweils eine zur Prüfung der Homogenität verwendet wurde. In der Reihenfolge der Entnahme wurde am 12.03.2020 durch Doppelbestimmungen mittels Mehrfachvolumenexpansion (CarboQC der Fa. Paar) der Gehalt an Kohlendioxid bestimmt und anschließend am 16.03.2020 nach CO₂-Entfernung in Doppelbestimmungen bei jeweils eigener Zufallsfolge unter Wiederholbedingungen die Relative Dichte 20 °C/20 °C durch elektronische Densitometrie (Biegeschwinger) und der Vorhandene Alkohol mittels Nahinfrarotspektroskopie (NIR) ermittelt. Weiterhin wurden mittels Fourier-Transform-Infrarotspektroskopie im mittleren Infrarot (FTIR) Relative Dichte, Vorhandener Alkohol, Gesamtsäure, pH-Wert, Glucose, Fructose, Gesamtzucker, Weinsäure, Äpfelsäure, Milchsäure, Flüchtige Säure und Glycerin bestimmt. Schließlich wurden Freie und Gesamte Schweflige Säure in einem automatisierten photometrischen Verfahren sowie der Gehalt an Kohlendioxid im Mehrfach-Volumen-Expansionsverfahren (MVE) bestimmt. Die Messergebnisse sind in Tabelle 1 und Tabelle 2 dokumentiert.

Zu den Ergebnissen der Kohlendioxidbestimmung ist zu erläutern, dass Homogenitätsprüfungen dieses Stoffes bei schäumenden Getränken und den Gegebenheiten der Messapparatur abweichend von dem sonst angewandten Vorgehen mit unmittelbar aufeinander folgender erster und zweiter Messung durchgeführt werden, weil beim Entfernen des Probegefäßes aus der Messapparatur mit einem Kohlendioxidverlust zu rechnen ist. Die entsprechenden Messwerte sind in der Spalte CO₂ V1 in der Reihenfolge aufgeführt wie sie für die erste und die zweite Messung der anderen Parameter ausgelost wurde. Um zu überprüfen, ob auch eine Vorgehensweise wie bei den übrigen Parametern möglich ist, wurden die Probengefäße nach der zweiten Messung aus der Messapparatur entfernt, zwischenzeitlich geschlossen und nach Abschluss der Doppelmessfolge erneut in der für die zweite Messung ausgelosten Reihenfolge ein drittes Mal gemessen. Erwartungsgemäß fielen die Werte bei diesen Messungen systematisch niedriger aus. Daher wurde die mittlere Differenz zwischen erster und dritter Messung zu 1,34 g/L ermittelt und als Konstante zu den Werten der dritten Messung addiert. Die so erhaltenen Werte sind in der Spalte CO₂ V2 unter den laufenden Nummern 13 bis 24 aufgeführt.

Die Messergebnisse wurden graphisch auf Auffälligkeiten bei einzelnen Messungen oder Proben und im Korrelationstest auf eine Abhängigkeit von der Messreihenfolge (Lfd.-Nr.) sowie von der Füllreihenfolge (Probe-Nr.) geprüft. Mit Ausnahme des Parameters Glycerin traten bei den mittels FTIR bestimmten Parametern weder zur Messreihenfolge noch zur Probenummer gesicherte Korrelationen auf. Bei den Messergebnissen der Relativen Dichte mittels Biegeschwinger wurde durch das als Ausreißer identifizierte erste Messergebnis eine Korrelation zur Messfolge vorgetäuscht.

Tabelle 1: Messergebnisse zur Homogenitätsprüfung des Prüfgutes FT20P01, Teil 1

Lfd.	Probe-	Relative	e Dichte	Vorh.	Alkohol	pH-Wert	Gesamt-	Glucose	Fructose	Gesamt-
Nr.	Nr.		ETID	NUD	ETID	ETID	säure	ETID	ETID	Zucker
		dens.	FTIR	NIR	FTIR	FTIR	FTIR	FTIR	FTIR	FTIR
				g/L	g/L		g/L	g/L	g/L	g/L
1	11	1,00168	1,00188	84,945	85,408	3,037	5,628	13,044	11,850	23,673
2	69	1,00200	1,00201	84,945	85,416	3,027	5,655	12,832	11,937	23,912
3	80	1,00197	1,00191	84,866	85,162	3,025	5,643	13,035	12,111	23,776
4	79	1,00203	1,00191	84,866	85,216	3,036	5,622	13,219	12,003	23,826
5	78	1,00202	1,00197	84,866	85,363	3,037	5,622	13,054	12,024	23,757
6	31	1,00202	1,00188	84,866	85,134	3,032	5,622	13,142	11,995	23,843
7	67	1,00201	1,00197	84,866	85,400	3,031	5,622	13,107	11,926	23,838
8	52	1,00200	1,00191	84,866	85,186	3,033	5,629	12,982	12,002	23,646
9	70	1,00202	1,00193	84,866	85,357	3,040	5,621	12,802	11,849	24,024
10	33	1,00202	1,00199	84,866	85,168	3,038	5,648	12,895	11,996	23,848
11	81	1,00202	1,00190	84,866	85,211	3,034	5,614	13,086	11,814	23,937
12	64	1,00203	1,00198	84,866	84,960	3,032	5,625	13,118	11,884	23,454
13	69	1,00202	1,00195	84,945	85,272	3,026	5,646	13,006	12,079	23,857
14	80	1,00200	1,00194	84,866	85,314	3,026	5,639	12,969	11,910	23,694
15	79	1,00200	1,00191	84,866	85,269	3,033	5,639	12,935	12,077	23,910
16	78	1,00200	1,00199	84,866	85,286	3,028	5,620	13,091	11,940	23,715
17	11	1,00199	1,00192	84,866	85,099	3,022	5,622	12,782	11,928	23,868
18	31	1,00201	1,00193	84,866	85,402	3,028	5,639	12,880	11,891	23,622
19	67	1,00203	1,00193	84,945	85,375	3,041	5,663	13,048	11,846	23,681
20	52	1,00202	1,00190	84,945	85,172	3,035	5,625	13,001	12,044	23,756
21	70	1,00201	1,00193	84,945	85,353	3,030	5,615	13,061	11,900	23,972
22	33	1,00201	1,00187	84,945	85,335	3,027	5,612	13,019	11,864	23,849
23	81	1,00204	1,00200	84,945	85,321	3,041	5,628	13,279	11,884	23,873
24	64	1,00204	1,00191	84,945	85,242	3,041	5,624	13,019	11,930	23,943

Tabelle 2: Messergebnisse zur Homogenitätsprüfung des Prüfgutes FT20P01, Teil 2

Lfd.	Probe-	Wein-	Äpfel	Milch-	Flücht.	Gly-	Freie	Gesamte	Probe-	CO ₂	CO ₂
Nr.	Nr.	säure	fel-	säure	Säure	cerin	SO ₂	SO_2	Nr.	V1	V2
			säure							*)	*1
		FTIR	FTIR	FTIR	FTIR	FTIR	phot.	phot.		MVE ^{*)}	MVE ^{*)}
		g/L	g/L	g/L	g/L	g/L	mg/L	mg/L		g/L	g/L
1	11	2,148	1,784	0,401	0,412	5,113	27	168	11	9,47	9,47
2	69	2,113	1,778	0,364	0,393	5,208	24	170	69	9,52	9,52
3	80	2,152	1,730	0,432	0,401	5,219	25	167	80	9,50	9,50
4	79	2,147	1,716	0,417	0,420	5,149	24	167	79	9,47	9,47
5	78	2,136	1,837	0,402	0,418	5,319	23	169	78	9,46	9,46
6	31	2,145	1,732	0,443	0,426	5,110	23	168	31	9,37	9,37
7	67	2,133	1,780	0,453	0,405	5,213	22	164	67	9,36	9,36
8	52	2,121	1,743	0,409	0,407	5,150	21	162	52	9,30	9,30
9	70	2,175	1,747	0,464	0,409	5,214	21	166	70	9,33	9,33
10	33	2,139	1,768	0,402	0,405	5,144	22	165	33	9,32	9,32
11	81	2,162	1,727	0,451	0,411	5,089	22	167	81	9,34	9,34
12	64	2,162	1,719	0,431	0,427	5,213	22	168	64	9,40	9,40
13	69	2,088	1,797	0,399	0,390	5,146	25	167	11	9,50	9,28
14	80	2,121	1,788	0,480	0,405	5,201	24	167	69	9,53	9,40
15	79	2,120	1,784	0,417	0,405	5,110	24	164	80	9,52	9,33
16	78	2,138	1,783	0,364	0,418	5,241	25	168	79	9,49	9,29
17	11	2,121	1,778	0,381	0,401	5,126	25	168	78	9,24	9,21
18	31	2,164	1,919	0,430	0,389	5,077	23	168	31	9,39	9,60
19	67	2,194	1,842	0,423	0,392	5,143	23	165	67	9,33	8,97
20	52	2,117	1,751	0,407	0,413	5,085	22	168	52	9,30	9,53
21	70	2,139	1,733	0,420	0,417	5,117	22	168	70	9,32	9,40
22	33	2,145	1,790	0,434	0,405	5,060	22	168	33	9,27	9,50
23	81	2,162	1,724	0,376	0,411	5,057	25	168	81	9,32	9,58
24	64	2,141	1,792	0,382	0,410	5,137	24	169	64	9,40	9,75

*)MVE: Mehrfach-Volumen-Expansion

Zur abschließenden Entscheidung über eine ausreichende Homogenität des Prüfgutes wird eine Varianzanalyse durchgeführt. Deren Ergebnisse sind in Tabelle 3 aufgeführt.

Tabelle 3: Ergebnisse der Varianzanalyse für das Prüfgut FT20P01

	Mittelwert	Ν	F	р	Stand	dardabweichu	ungen	Quoti	enten	Maximal
					Fehler	Proben	Ziel (s _z)	s_r/s_z	s_{Pr}/s_z	tolerierter
					(S _r)	(S _{Pr})				Wert für s _{Pr}
Rel. Dichte, dens	1,002000	23	1,3562	0,3037	0,000065	0,000027	0,000132	0,490	0,207	0,00008
- ohne Lfd.Nr.=1	1,002013	22	1,8199	0,1676	0,000014	0,000009	0,000132	0,105	0,069	0,00005
Rel. Dichte, FTIR	1,001934	23	0,9155	0,5547	0,000041		0,000132	0,309		0,00007
Vorh. Alkohol, NIR	85,27	23	0,8806	0,5800	0,119		0,535	0,223		0,2413
Vorh. Alkohol, FTIR	84,90	23	0,6623	0,7485	0,0427		0,535	0,080		0,2183
pH-Wert	5,630	23	1,1826	0,3871	0,0128	0,0039	0,107	0,120	0,036	0,0445
Gesamtsäure	3,032	23	0,9192	0,5520	0,0057		0,0476	0,120		0,0198
Glucose	13,02	23	0,8183	0,6267	0,127		0,394	0,322		0,1972
Fructose	11,95	23	1,6455	0,2024	0,0722	0,0410	0,365	0,198	0,112	0,1612
Verg-Zucker	23,80	23	1,1212	0,4214	0,127	0,0313	0,686	0,185	0,046	0,2992
Weinsäure	2,141	23	1,8375	0,1553	0,0193	0,0125	0,108	0,178	0,116	0,0469
Äpfelsäure	1,773	23	0,8487	0,6036	0,0484		0,063	0,769		0,0515
Milchsäure	0,4159	23	1,5645	0,2267	0,0270	0,0143	0,0268	1,004	0,533	0,0272
Flücht. Säure	0,4079	23	1,2673	0,3440	0,0098	0,0036	0,0286	0,342	0,125	0,0146
Glycerin	5,152	23	3,5234	0,0201	0,0435	0,0489	0,228	0,191	0,215	0,0999
Freie SO ₂	23,33	23	3,3846	0,0233	1,04	1,14	2,32	0,448	0,489	1,3415
Gesamte SO ₂	167,0	23	1,3355	0,3127	1,72	0,704	5,357	0,321	0,131	2,6758
Kohlendioxid V1	9,394	23	6,2737	0,0018	0,0477	0,0774	0,347	0,137	0,223	0,1461
Kohlendioxid V2	9,403	23	0,7199	0,7032	0,165		0,347	0,474		0,2065

N = Anzahl der Messwerte, F = Prüfgröße des F-Testes, p = Irrtumswahrscheinlichkeit der Varianzanalyse

Für die Aussagekraft der Varianzanalyse, insbesondere eines nicht signifikanten Testergebnisses, ist der Quotient (siehe Spalte "Quotient s_r/s_z") aus der Wiederholstandardabweichung (Spalte: Standardabweichung Fehler s_r) und der Zielstandardabweichung (Spalte: Standardabweichung Ziel s_z) wesentlich. Er soll den Betrag 0,5 nicht überschreiten, weil anderenfalls eine Inhomogenität unentdeckt bleiben kann. Diese Bedingung ist mit Ausnahme der Parameter Äpfelsäure und Milchsäure erfüllt. Erfahrungsgemäß erreicht die Wiederholstreuung für den Parameter Äpfelsäure bei der FTIR-Bestimmung nicht den erforderlichen Wert und der Gehalt an Milchsäure liegt unterhalb des Anwendungsbereiches der Methode. Die Messergebnisse beider Parameter tragen daher nicht zur Entscheidung über die Homogenität bei.

Zeigt die Varianzanalyse bei Erfüllung der Bedingung $s_r/s_Z < 0,5$ keine Signifikanz, folgt, dass das Untersuchungsmaterial hinsichtlich dieses Parameters als homogen zu betrachten ist. Diese Doppelbedingung ist für 11 der 15, teilweise unter Anwendung unterschiedlicher Untersuchungsmethoden oder Auswertungsvarianten, geprüften Parameter erfüllt. Damit ist für diese Parameter eine ausreichende Homogenität zuverlässig nachgewiesen.

Bei den Parametern Glycerin und Freie Schweflige Säure zeigt die Varianzanalyse einen signifikanten Effekt, d. h. bei diesen Parametern ist die Streuung zwischen den Proben gesichert größer als die Standardabweichung des Messfehlers. In diesem Fall muss geprüft werden, ob die angezeigte Inhomogenität für die Laborvergleichsuntersuchung relevant ist. Hierzu wird die Standardabweichung der Proben (s_{Pr}) mit der Zielstandardabweichung (s_z) verglichen. Liegt der Quotient beider Größen (Spalte "Quotient s_{Pr}/s_z") unter 0,3, d. h. unter 30 % der Zielstandardabweichung so ist das Material ausreichend homogen. Dies trifft für den Parameter Freie Schweflige Säure nicht zu. Es bestehen daher Zweifel an einer ausreichenden Homogenität. Letztlich entscheidend ist das Prüfkriterium nach Fearn und Thompson (Analyst 126 (2001), 1414-1417). Dieses berücksichtigt weitere statistische Einflüsse. Hiernach darf die Standardabweichung der Proben (Spalte "Proben (s_{Pr})") den in der Spalte "Maximal tolerierter Wert für s_{Pr}" ausgewiesenen Betrag nicht überschreiten. Beide Werte sind in der Tabelle 3 blau mar-

kiert und zeigen, dass dieses Prüfkriterium noch eingehalten wird. Somit gilt auch für diese Parameter die Forderung einer ausreichenden Homogenität als erfüllt.

Zusammenfassend führt die Homogenitätsprüfung damit zu dem Ergebnis, dass das Material hinsichtlich der geprüften und aussagekräftigen Parameter ausreichend homogen und somit für den Einsatz in der Laborvergleichsuntersuchung geeignet ist.

2.1.5 Verteilung des Untersuchungsgutes

Für die bei der Landwirtschaftskammer angemeldeten Teilnehmer wurde das benötigte Untersuchungsgut durch einen Paketdienst oder durch Boten ab dem 09.04.2020 abgesandt. Die zur Abholung der Proben angemeldeten Laboratorien konnten somit ab dem 21.04.2020 das Untersuchungsgut bei der jeweils von ihnen gewählten Prüfstelle in Empfang nehmen. Insgesamt wurde einschließlich einer Reserve bei den Prüfstellen Material für 32 Laboratorien mit je 3 Flaschen zu je 0,75 L bereitgestellt. An weitere 11 Laboratorien, die um Zusendung gebeten hatten, wurden je Labor 3 Flaschen ebenfalls am 09.04.2020 abgesandt. Die 87 Teilnehmer an der speziellen FTIR-Laborvergleichsuntersuchung erhielten das Prüfmaterial per Paketdienst ebenfalls zu dieser Zeit. An diese Teilnehmer wurden außer dem Schaumwein FT20P01 vier weitere Prüfgüter mit je 2 bis 3 Flaschen zu je 0,375 L, 0,33 L oder 0,25 L versandt. Die zugesandte Anzahl Flaschen je Probe richtete sich danach, welche der Prüfgüter den Teilnehmern zur Untersuchung mit herkömmlichen Methoden aufgegeben waren.

2.2 Informationen zur Behandlung und Untersuchung der Proben

Alle Laboratorien erhielten je nach dem Umfang ihrer Teilnahme an der Laborvergleichsuntersuchung Informationsblätter über die Aufgabenstellung und Hinweise für die Durchführung der Untersuchungen sowie Formblätter als Hilfsmittel zur Bearbeitung der Proben im Labor: Diese konnten im Ausnahmefall auch zur Ergebnismitteilung benutzt werden. Als Regelform zur Mitteilung der Untersuchungsergebnisse erhielten alle Teilnehmer eine auf den Umfang ihrer Teilnahme abgestimmte Exceldatei per E-Mail zugesandt. Sie enthielt eine Nutzungsanleitung. Ihre Verwendung erleichtert Zusatzangaben, die fachlich für die Bewertung der Untersuchungsergebnisse erforderlich sind, und die Weiterverarbeitung der Daten.

Den Laboratorien, die ausschließlich im Umfang der amtlichen Qualitätsweinanalyse unter Anwendung herkömmlicher Untersuchungsverfahren an der Untersuchung des Schaumweins FT20P01 teilnahmen, wurden als zu bestimmende Parameter Relative Dichte 20 °C/20 °C, Vorhandener Alkohol, Vergärbare Zucker, Gesamtsäure, Freie und Gesamte Schweflige Säure sowie bei Zulassung zur Untersuchung von Schaumwein (CO₂)-Überdruck benannt. Ferner wurde die Mitteilung der für die Parameter Gesamtalkohol, Gesamtextrakt und Zuckerfreien Extrakt berechneten Werte gefordert. Für den Fall, dass der Gehalt an Schwefliger Säure jodometrisch bestimmt wird, wurde darauf hingewiesen, dass nach dem Ergebnis der Voranalyse bei dem Schaumwein als Prüfgut eine Bestimmung der Reduktone erforderlich ist. Der Gehalt an Schwefliger Säure sollte nach den Regeln des Labors für die Mitteilung an Kunden bzw. nach den Regeln des Qualitätsmanagements berichtet werden. Im Fall der Mitteilung jodometrisch unter Abzug der Reduktone bestimmter Werte sollte jedoch zusätzlich der Reduktonwert

mitgeteilt werden. Obwohl in der amtlichen Qualitätsweinanalytik nicht mehr gefordert, wurde die Abgabe eines Untersuchungsergebnisses für den Parameter Glucose ermöglicht. Weiterhin wurde auf die Regeln zur Auswahl der Untersuchungsmethoden hingewiesen. Das Untersuchungsgut sollte als "Deutscher Qualitätsschaumwein trocken" betrachtet und einer sensorischen Prüfung unterzogen werden. Für Teilnehmer ohne E-Mail-Adresse wurde die Datei zur Ergebnismitteilung auf der Website der Landwirtschaftskammer zum Herunterladen bereitgestellt. Sofern diese nicht genutzt werden konnte, wurde gebeten, das Formblatt für die Amtliche Qualitätsweinprüfung als Standardform der Ergebnismitteilung zu benutzen. Außerhalb Rheinland-Pfalz ansässige Laboratorien wurden auf die Fundstelle des Methodenkatalogs der Landwirtschaftskammer und der Kodierungen der Untersuchungsverfahren im Internet (www.lwk-rlp.de) hingewiesen.

Die Teilnehmer an den **FTIR-Untersuchungen** erhielten neben dem Informationsschreiben über die Aufgabenstellung eine spezielle Anleitung zur Durchführung der FTIR-Messungen sowie zum Export der für die Auswertung erforderlichen Daten. Es wurde gebeten, die FTIR-Messungen im Kalibriermodus, d. h. unter Aufzeichnung der spektralen Rohdaten, durchzuführen. Es sollten sowohl die auf dem Bildschirm dargestellten Ergebnisse als auch die Rohdaten exportiert und als Datei an den Auswertenden übermittelt werden. Darüber hinaus wurde um die Überlassung der benutzten Produktkalibrierung gebeten, soweit die Gerätesoftware deren Export ermöglicht und sie nicht bereits im Vorjahr eingesandt wurde. Zumindest waren aus der Produktkalibrierung die B0-Koeffizienten, Slope- und Interzept-Werte auf einem zur Verfügung gestellten Formblatt bzw. Registerblatt der Datei zur Ergebnismitteilung mitzuteilen.

Die zum Einsatz des FTIR-Verfahrens bei der Qualitätsweinprüfung zugelassenen Laboratorien waren gehalten, zur Messung der Parameter Vorhandener Alkohol, Gesamtsäure und Vergärbare Zucker die verpflichtend für die Verwendung bei der amtlichen Qualitätsweinanalyse zugelassenen Parameterkalibrierungen nach dem Stand des Jahres 2011 zu verwenden. Diese stehen als Produktkalibrierung AP 2011 auf der Website der Landwirtschaftskammer Rheinland-Pfalz zur allgemeinen Verfügung. Die in ihr enthaltenen Parameterkalibrierungen für Vorhandenen Alkohol und Gesamtsäure sind identisch mit den seit 2003 für die Bestimmung dieser Parameter vorgegebenen Parameterkalibrierungen. Die Parameterkalibrierungen für Glucose und Fructose ersetzen in Anpassung an die geänderte Definition des weinrechtlichen Zuckerbegriffes die frühere, auf reduktometrischen Zuckerbestimmungen beruhende Parameterkalibrierung für Vergärbare Zucker. Die Summe der Ergebnisse für Glucose und Fructose ist im Untersuchungsbefund als Vergärbare Zucker einzutragen. In der von der Landwirtschaftskammer zur Verfügung gestellten Fassung enthalten die Parameterkalibrierungen keine Slope-Interzept-Korrektur, d. h. der Slope-Wert ist stets 1,0 und der Interzept-Wert Null. In der Regel ist eine Anpassung an die Besonderheiten der einzelnen Geräte und eventuell Weinjahrgänge in den Laboratorien erforderlich, um bestmögliche Untersuchungsergebnisse zu erhalten.

Die FTIR-Untersuchung war an 5 Prüfgütern durchzuführen. Das für alle bei der Landwirtschaftskammer zugelassenen Teilnehmer gemeinsame Prüfgut war über die Parameter der amtlichen Qualitätsweinanalyse hinaus mit anderen Methoden als der FTIR-Methode zu unter-

suchen. Die hierzu eingesetzten Methoden, bevorzugt Referenzmethoden, werden im Folgenden mit Ausnahme der ¹H-Kernresonanzspektroskopie (¹H-NMR) als "herkömmliche Methoden" zusammengefasst. Es sollten Fructose, Glycerin, pH-Wert, Weinsäure, Flüchtige Säure, Gesamte Äpfelsäure und Gesamte Milchsäure bestimmt werden, soweit dies dem jeweiligen Labor aufgegeben und möglich war. Außerdem wurde die Möglichkeit geboten, die Ergebnisse der Bestimmungen von Acetat (als Essigsäure), L-Äpfelsäure oder L-Milchsäure mitzuteilen. Somit wurde der Umfang der Untersuchungen mit herkömmlichen Methoden zumindest auf die Parameter aufgestockt, die üblicherweise mit FTIR-Spektroskopie ermittelt werden. Der resultierende Untersuchungsumfang galt für alle mit herkömmlichen Methoden zu untersuchenden Proben. Auf die genannten Parameter waren von den Teilnehmern an den FTIR-Untersuchungen jeweils mindestens zwei der fünf Proben zusätzlich mit diesen Methoden zu untersuchen. Die Untersuchung aller Proben war anheimgestellt. Eine ausreichende Anzahl Untersuchungsergebnisse mit herkömmlichen Methoden war für alle fünf Proben erforderlich, weil die Ergebnisse des FTIR-Verfahrens unter Bezugnahme auf den Median der Untersuchungsergebnisse mit den herkömmlichen Methoden bewertet werden.

Von den Laboratorien, die ausschließlich herkömmliche Untersuchungsmethoden einsetzten, waren die Untersuchungen zwischen dem 21. April und dem 28. Mai 2020 durchzuführen. Als Ausschlusstermin war der 19.06.2020 benannt. Die an der speziellen FTIR-Laborvergleichsuntersuchung beteiligten Laboratorien sollten die Untersuchungen zwischen dem 21. April und dem 10. Juni 2020 durchführen. In begründeten Einzelfällen konnte eine darüber hinaus gehende Abgabefrist vereinbart werden. Insgesamt 124 zugelassene und eingeladene Laboratorien, davon 87 Laboratorien für die FTIR-Laborvergleichsuntersuchung, hatten sich zur Teilnahme angemeldet. Alle angemeldeten Teilnehmer legten Ergebnisreihen vor.

2.3 Ergebnisübermittlung und Ergebnisbehandlung

Stand: 02.03.2021

Im Wesentlichen erfolgte die Ergebnisübermittlung termin- und formgerecht, d. h. wie erbeten als Dateien per E-Mail oder auf den vorgegebenen Formularen. Aus dem Kreis der unmittelbar von der Landwirtschaftskammer betreuten Teilnehmer berichteten termingerecht 30 Teilnehmer mit der zugesandten Exceldatei, während 7 Laboratorien ihre Ergebnisse schriftlich an die Landwirtschaftskammer oder als PDF-Datei an den Auswerter einsandten, sodass letztlich 37 Laborergebnismitteilungen vorlagen. Alle 87 angemeldeten Teilnehmer der FTIR-Laborvergleichsuntersuchung übermittelten ihre Ergebnisdateien unmittelbar an den Auswertenden. Fünf Teilnehmer waren an dem erweiterten Parameterumfang interessiert und beteiligten sich nur mit Untersuchungen nach anderen als der FTIR-Methode. Zwei weitere Teilnehmer des erweiterten Ringversuchs beschränkten sich vereinbarungsgemäß auf die Parameter der amtlichen Qualitätsweinprüfung. Drei Teilnehmer aus Laboratorien, die nur das FTIR-Verfahren einsetzen, konnten keine Ergebnisse mit anderen als der FTIR-Methode mitteilen. Fünf Teilnehmer teilten Ergebnisse zu einer oder mehreren Proben mit, die sie mit zwei Kalibrierungen gemessen hatten. Daher konnten insgesamt bis zu 85 FTIR-Messergebnisse vorliegen. Von 20 Teilnehmern gingen 25 Produktkalibrierungen (PRD-Dateien), davon aus 5 Laboratorien für Rot- und Weiß-

weine bzw. Schaumwein unterschiedliche Dateien ein. Rohdaten-Dateien (CSV- und FSS-Dateien) sandten 57 Teilnehmer ein.

Nach der Bezeichnung wurden erweiterte, d. h. alle gängigen Parameter der FTIR-Untersuchung umfassende Produktkalibrierungen auf der Basis der Kalibrierung AP_2011 von 12 Teilnehmern eingesetzt. 1 Teilnehmer beschränkte sich auf die oben genannten vier Parameter der Produktkalibrierung AP_2011. Eine Messung mit dieser Produktkalibrierung ist aber nur sinnvoll und aussagekräftig, wenn die verwendete Fassung hinsichtlich der Slope-Interzept-Korrektur auf demselben Stand ist wie die im Labor üblicherweise eingesetzte Kalibrierung.

Wie üblich werden die Untersuchungsergebnisse der Labors unter einer Auswertenummer bearbeitet. Da die Teilnehmer an der FTIR-Laborvergleichsuntersuchung zumindest zu einem Teil der Proben sowohl herkömmliche als auch FTIR-Untersuchungsergebnisse einzusenden hatten, wurde für letztere eine zusätzliche Auswertenummer zugeteilt. Diese ergab sich durch die Erhöhung der Auswertenummer für die Ergebnisse mit herkömmlichen Methoden um 200 bzw. bei Einsendung von Ergebnissen mit einer zweiten Kalibrierung zusätzlich um 300. Somit entsprechen der Auswertenummer 1 bei den Ergebnissen der herkömmlichen Untersuchungen für die FTIR-Untersuchungsergebnisse die Auswertenummern 201 bzw. 301. Die Erhöhung der Auswertenummer wurde auch bei den Teilnehmern vorgenommen, die keine Untersuchungsergebnisse mit herkömmlichen Methoden mitgeteilt haben. Es war ein Messergebnis mit dem FTIR-Verfahren je eingesetzter Kalibrierung für jede Probe einzusenden. Sofern mehrere FTIR-Messergebnisse mit derselben Kalibrierung für ein Untersuchungsgut eingesandt wurden, ist stets der zuerst gemessene Befund ausgewertet worden.

Für die Mitteilung der Untersuchungsergebnisse mit herkömmlichen Methoden enthielt die Datei zur Ergebnisübermittlung zwei Registerblätter. Auf jedem Registerblatt kann zu einem Parameter nur eine Untersuchungsmethode für alle untersuchten Proben angegeben werden. Es kann aber sinnvoll sein, in Abhängigkeit von den Eigenschaften des jeweiligen Prüfgutes für denselben Parameter bei verschiedenen Prüfgütern unterschiedliche Untersuchungsmethoden zu verwenden. Dies zu dokumentieren sollte die Bereitstellung von zwei Registerblättern ermöglichen. In der vorgesehenen Weise nutzten nur einzelne Teilnehmer diese Möglichkeit. Stattdessen wurden für einzelne oder mehrere Parameter zusätzliche Ergebnisse mit weiteren Methoden an derselben Probe mitgeteilt, obwohl die Teilnehmer nur einen Untersuchungsbefund für jede mit herkömmlichen Methoden zu bestimmende Probe/Parameter-Kombination einsenden sollten. Hierfür dürften vor allem Anforderungen aus der Akkreditierung der Labors auslösend sein. Für alle 21 Teilnehmer, die das zweite Registerblatt zur Mitteilung von Ergebnissen mit anderen Methoden als auf dem ersten Registerblatt nutzten, wurden zusätzliche Auswertenummern aus dem Wertebereich 90 bis 110 zugeteilt, während unter den Auswertenummern 111 bis 117 zusätzliche Ergebnisreihen mittels ¹H-Kernresonanzspektroskopie erfasst wurden.

Für die Teilnehmer an der FTIR-Laborvergleichsuntersuchung wurde in der Datei zur Ergebnismitteilung weiterhin ein Registerblatt zum Eintragen der FTIR-Untersuchungsergebnisse angeboten. Dessen Verwendung gestattet dem Teilnehmer gegenüber der vom Bildschirm exportierten Ergebnisdatei eine Beschränkung der mitgeteilten Ergebnisse auf diejenigen, deren Be-

wertung gewünscht wird. Außerdem ergibt sich für den Auswerter der Vorteil einer einheitlichen Abfolge der Parameter, wodurch die weitere Verarbeitung erleichtert wird. 74 der 80 Einsender von FTIR-Untersuchungsergebnissen nutzten diese Möglichkeit. 6 Teilnehmer, die dieses Registerblatt nicht nutzten, wurden individuell gebeten, zukünftig das vorgesehene Registerblatt zu verwenden. Soweit zusätzlich eine vom Bildschirm exportierte Ergebnisdatei übermittelt wurde, sind die auf dem FTIR-Ergebnisblatt der Ergebnismappe eingetragenen Werte als maßgebliches Laborergebnis behandelt worden. Ausgenommen sind offensichtliche Fehlübertragungen, die auf dieser Grundlage vom Auswerter korrigiert werden können.

Nur vereinzelt wurden Methodenangaben unterlassen oder fehlerhafte Methodenangaben gemacht. Ausgehend von der Kodierung der Methode der Alkoholbestimmung waren bei dem Parameter Gesamtextrakt. zweifelhafte (4) oder fehlerhafte Methodenkodierungen (12) relativ häufig. Hier wurde die 2011 überarbeitete Regelung für die Verwendung der Kodierungen in Abhängigkeit von der angewandten Methode der Alkoholbestimmung nicht beachtet. Alle Kodierungsmängel wurden in den Laborteilnahmebescheinigungen angesprochen.

Der Bitte um Mitteilung des sensorischen Befundes an der Probe, der von allen bei der Landwirtschaftskammer zugelassenen Laboratorien zu erheben war, entsprachen 57 der 86 Laboratorien. Die sensorischen Befunde sind ohne Bewertung im Abschnitt 6.22 wiedergegeben. Überwiegend wurde der Schaumwein zufriedenstellend beschrieben und bewertet. Nur in einzelnen Fällen wurden im Widerspruch zu anderen stehende Beschreibungen mitgeteilt oder nicht vorhandene Fehler angegeben. Die weitere Auswertung bleibt den einzelnen Teilnehmern überlassen, da Qualitätszahlen nur unvollständig angegeben wurden und eine standardisierte Bewertung der verbalen Beschreibungen nicht möglich ist.

2.4 Ergebnisauswertung

Stand: 02.03.2021

Die allgemein bei der Laborvergleichsuntersuchung der Landwirtschaftskammer angewendeten Regeln und Verfahrensweisen zur Aus- und Bewertung der Ergebnisse sind in einer speziellen Ausarbeitung auf der Internetseite der Landwirtschaftskammer unter dem Link "https://www.lwk-rlp.de/de/weinbau/wein/qualitaetsweinpruefung/" in der Rubrik "Analysemethoden/Labors" als PDF-Datei hinterlegt. Sie werden auch bei dieser Laborvergleichsuntersuchung angewendet soweit nachstehend bzw. bei der Besprechung der Ergebnisse für einzelne Parameter keine Abweichungen oder Ergänzungen aufgezeigt werden.

Neben der Bewertung der Ergebnisse des FTIR-Verfahrens, die in dieser Laborvergleichsuntersuchung auf der Basis der Ergebnisse anderer herkömmlicher Untersuchungsverfahren durchgeführt wird, ist eine nähere Betrachtung der Ergebnisse des FTIR-Verfahrens von Interesse. Daher werden in Abschnitt 5 einige Ergebnisse des FTIR-Verfahrens gesondert dargestellt, bewertet und mit den Ergebnissen der herkömmlichen Analytik verglichen.

Außerdem werden bei der Dokumentation der Ergebnisse zu den einzelnen Parametern im Abschnitt 6 des Berichtes in einer zusätzlichen Tabelle Angaben zur Häufigkeit der Anwendung der einzelnen Analysemethoden sowie der robuste Mittelwert und die robuste Standardabweichung der mit diesen Methoden erhaltenen Laborergebnisse dargestellt. Diese beschreibenden

statistischen Kenngrößen werden verwendet, weil zu den einzelnen Analysenmethoden häufig nur wenige Analyseergebnisse vorliegen und bei der üblichen, eine Normalverteilung der Werte voraussetzenden Berechnungsweise einzelne Fehlergebnisse eine große Auswirkung auf den Mittelwert und die Standardabweichung haben können. Mittelwerte können gegenüber dem wahren Wert stark verschoben und Standardabweichungen stark vergrößert werden. Diese Schwierigkeiten können durch robuste statistische Verfahren zur Berechnung von Mittelwert und Standardabweichung vermieden bzw. zumindest reduziert werden. Ausgehend von dem Median aller Ergebnisse werden bei der Anwendung dieser Berechnungsverfahren extreme Werte nicht eliminiert, sondern ihr Einfluss durch eine geeignete Berechnungsweise verringert. Die Norm ISO 13528 beschreibt und empfiehlt in ihrem Anhang C Abschnitt 1 unter Algorithmus A das hier angewendete Verfahren. Die so erhaltenen deskriptiven Kennzahlen charakterisieren die Untersuchungsergebnisse mit den angewendeten Methoden zutreffender als die Ergebnisse der klassischen Berechnung ohne Ausschluss von extremen Ergebnissen (Ausreißern).

2.4.1 Bewertung der Laborleistung

Stand: 02.03.2021

Nach den allgemeinen Regeln gilt der Median aller Laborergebnisse als 'wahrer Wert'. Einer Empfehlung des "Wissenschaftlichen Arbeitsausschusses FTIR-Kalibrierung für die amtliche Weinanalytik" folgend, wird für alle Laborergebnisse als maßgeblich der Median der Ergebnisse mit herkömmlichen Methoden, insbesondere der Referenzverfahren, herangezogen, d. h. der 'wahre Wert' wird ohne Berücksichtigung der FTIR-Untersuchungsergebnisse oder anderer, systematisch oder definitionsgemäß von den Ergebnissen der Referenzverfahren abweichender Untersuchungsergebnisse ermittelt. Auch Ergebnisse der ¹H-Kernresonanzspektroskopie werden grundsätzlich nicht einbezogen. Damit wird beachtet, dass sowohl nach wissenschaftlichen wie nach praktischen Erwägungen generell und auch bei den FTIR-Untersuchungsergebnissen die Ergebnisse der herkömmlichen Referenzanalytik maßgeblich sind.

Die Bewertung der Leistung der Laboratorien erfolgt durch einen Vergleich des Laborergebnisses mit dem Median der berücksichtigten Ergebnisse der Laboratorien für den betrachteten Parameter. Hierbei wird als Maßstab der erreichbaren Übereinstimmung, d. h. als Leistungskriterium (Zielstandardabweichung) in der Regel die Vergleichsstandardabweichung des Referenzverfahrens verwendet und der Z-Score als Leistungskennzahl errechnet. Die Ergebnisse der FTIR-Untersuchungen werden aber durch Matrixeffekte beeinflusst, die vom einzelnen Laboratorium nicht beherrschbar sind. Daher hat der Wissenschaftliche Arbeitsausschuss angeregt, zu deren Bewertung experimentell ermittelte Zielstandardabweichungen (Übereinstimmungsstandardabweichung sü FTIR) zu verwenden, die den Einfluss der Matrix auf die Streuung der FTIR-Untersuchungsergebnisse um den Median der Ergebnisse herkömmlicher Methoden nach statistischen Regeln berücksichtigen. Für die meisten in dieser Laborvergleichsuntersuchung erfassten Parameter hat er statistische Kennzahlen des FTIR-Verfahrens erarbeitet und zuletzt 2011 fortentwickelt, um die seitdem empfohlene Kalibrierung des Parameters Fructose zu berücksichtigen. Da diese Kennzahlen im Bereich weinüblicher Konzentrationen der Parameter konstant sind, während sie bei einigen herkömmlichen Untersuchungsverfahren konzentrationsabhängig sind, kann - vor allem bei höheren Konzentrationen - der Wert der Zielstandardabweichung für Ergebnisse des herkömmlichen Verfahrens größer sein als der Wert der Matrixeffekte berücksichtigenden Zielstandardabweichung (s_Ü _{FTIR}). In diesem Fall würden die FTIR-Laborergebnisse strenger bewertet als die Ergebnisse der herkömmlichen Verfahren. Der Wissenschaftliche Arbeitsausschuss ist in seiner 8. Sitzung (2011) zu dem Ergebnis gekommen, dass dies nicht erforderlich ist. Er hat empfohlen, die Zielstandardabweichung für die Ergebnisse herkömmlicher Verfahren auch zur Bewertung der FTIR-Ergebnisse anzuwenden, falls ihr Wert gleich oder größer ist als der Wert der Matrixeffekte berücksichtigenden Zielstandardabweichung. Diese Empfehlung wurde bei der Berechnung der Z-Scores für die FTIR-Ergebnisse berücksichtigt.

2.4.2 Untere Grenze des Anwendungsbereiches

Bei geringen Stoffgehalten, d. h. bei Messungen an der unteren Grenze des Anwendungsbereiches jeder Methode ist in der Regel die Streuung der Messergebnisse erheblich größer als die dokumentierte Vergleichsstandardabweichung des jeweils zum Vergleich herangezogenen Verfahrens oder die nach Horwitz berechnete, bei geeigneten und beherrschten Untersuchungsverfahren zu erwartende Vergleichsstandardabweichung. Es ergeben sich dann keine sinnvollen Bewertungen der Messergebnisse durch den Z-Score. Stoffgehalte in diesem Grenzbereich sind häufig, insbesondere für die Anwendung des FTIR-Verfahrens, weder aus Gründen der Identitätssicherung noch der sachgerechten Behandlung oder Bewertung des Erzeugnisses von Bedeutung. Andernfalls ist ein zu deren Erfassung geeignetes Messverfahren anzuwenden. Daher hat der Wissenschaftliche Arbeitsausschuss bereits anlässlich der 6. Sitzung (2009) empfohlen, in diesem Grenzbereich keine Z-Scores zu berechnen. In diesem Konzentrationsbereich können bei der FTIR-Untersuchung auch negative Messwerte auftreten. Diese Empfehlung wurde anlässlich der 7. Sitzung (2010) dahingehend fortentwickelt, dass für die Ergebnisse an der unteren Grenze des Anwendungsbereiches aller Messverfahren keine Z-Scores berechnet werden. Diese gilt als erreicht, wenn das Dreifache der experimentell entwickelten Zielstandardabweichung den Betrag des Bezugswertes erreicht oder überschreitet.

Generell ist in diesem Zusammenhang darauf hinzuweisen, dass die Wiedergabe eines Untersuchungsergebnisses durch den Wert Null nicht korrekt ist. Bei Laborvergleichsuntersuchungen müssen solche Ergebnisse in der Form '< NG (Zahlenwert der Nachweisgrenze)' oder '< BG (Zahlenwert der Bestimmungsgrenze)' mitgeteilt werden, weil in den statistischen Auswertungsprogrammen eine Null als Zahl behandelt wird und somit für die Gesamtheit der Untersuchungsergebnisse und laborspezifisch zu fehlerhaften Auswertungsergebnissen führt. Ebenso sind die Angaben 'n.n.' für "nicht nachweisbar" oder 'n.b.' für nicht bestimmbar unkorrekt, weil diese Angaben ohne den Zahlenwert der Nachweis- bzw. Bestimmungsgrenze nicht mit dem Median aller Laborergebnisse verglichen und somit als richtiges oder falsches Untersuchungsergebnis bewertet werden können. In den Laborergebnismitteilungen wurde im Bedarfsfall in Form einer laborspezifischen Anmerkung auf diese Mängel hingewiesen.

2.4.3 Spezielle Regelungen für einzelne Parameter

2.4.3.1 Vorhandener Alkohol

Beurteilungsbasis sind stets die Ergebnisse aus Destillationsverfahren zur Alkoholbestimmung (LwK 2.1 und LwK 2.4), weil eine nähere Betrachtung der Ergebnisse unter Berücksichtigung

der Untersuchungsmethoden zeigt, dass insbesondere mittels der Matrix abhängigen Refraktometrie nicht selten systematisch abweichende Ergebnisse erhalten werden. Systematisch abweichende Ergebnisse können auch mittels HPLC erhalten werden, da nur Ethanol nicht aber weitere Nebenalkohole wie bei der Destillation erfasst werden. Schließlich ist weinrechtlich maßgeblich der mit dem OIV-Destillationsverfahren bestimmte Alkoholgehalt. Als Leistungskriterium war hier für alle Prüfgüter die Vergleichsstandardabweichung von ± 0,535 g/L aus der OIV-Methode (LwK 2.1) zur Ermittlung gültiger Z-Scores geeignet.

Zum Parameter Vorhandener Alkohol ist weiterhin anzumerken, dass die Messergebnisse grundsätzlich in der Einheit g/L erwartet werden. In einigen Laboratorien ist jedoch die Anwendung der Einheit %vol die Regel und insbesondere bei der Bildschirmausgabe der FTIR-Untersuchungsergebnisse voreingestellt. Da die vom Bildschirm exportierten Daten eingesandt werden durften, wurden alle Angaben in der Einheit %vol nicht als fehlerhaft bewertet sondern vom Auswerter mit dem Faktor 7,8924 in die Einheit g/L umgerechnet.

2.4.3.2 Gesamtalkohol, Gesamtextrakt und Zuckerfreier Extrakt

Die berechneten Werte für Gesamtalkohol, Gesamtextrakt und Zuckerfreien Extrakt gehören zu den Standardparametern der amtlichen Qualitätsweinanalyse. Ergebniswerte sind für das Prüfgut FT20P01 durch die bei der Landwirtschaftskammer Rheinland-Pfalz zugelassenen Laboratorien mitzuteilen. Daher sind für das Prüfgut FT20P01 auf allen Ergebnis-Registerblättern der Ergebnismitteilungsdatei Eingabefelder für diese Parameter vorgegeben. Dabei wird davon ausgegangen, dass auf den Registerblättern 'herk. Ergebnisse (1)' und 'herk. Ergebnisse (2)' nur Berechnungsergebnisse eingetragen werden, die ausschließlich auf herkömmlich bestimmten Werten beruhen. Für den Parameter Gesamtextrakt ist die Mitteilung der Ergebnisse nach herkömmlichen Methoden für alle fünf Prüfgüter vorgesehen, da diese Grundlage zur Bewertung der unmittelbar aus den Infrarotspektren abgeleiteten Messergebnisse bilden. Zu den besonderen Gegebenheiten bei der Berechnung der hier angesprochenen Parameter auf der Grundlage von FTIR-Messergebnissen siehe die Abschnitte 5.1.1 und 5.1.2.

2.4.3.3 Vergärbare Zucker

Stand: 02.03.2021

Der Begriff Vergärbare Zucker ist durch die gültigen fachlichen Definitionen der OIV und die rechtlichen Regelungen im europäischen und deutschen Weinrecht eigentlich überholt und müsste durch den Begriff "Zucker" oder "Gesamtzucker" ersetzt werden, der als Summe aus Glucose und Fructose sowie – bei Vorhandensein – Saccharose definiert ist. Der Begriff Vergärbare Zucker wird aber noch in der Weinverordnung und infolgedessen in der amtlichen Qualitätsweinprüfung sowie im allgemeinen, fachlichen Sprachgebrauch verwendet.

In dieser Laborvergleichsuntersuchung wird entsprechend der gültigen rechtlichen Definition aus den Laborergebnissen der enzymatischen und hochleistungsflüssigkeitschromatographischen Bestimmungen der Bezugswert und damit die Beurteilungsbasis für Vergärbare Zucker abgeleitet. Eine Beschränkung auf die Ergebnisse der enzymatischen Bestimmungen kann in Abhängigkeit von Zuckergehalt und Weinart erforderlich sein, wenn die übliche systematische Differenz in der Größenordnung von 0,5 g/L zwischen den Ergebnissen der beiden Bestimmungsprinzipien die Bewertung der Laborleistung beeinträchtigt. Als Leistungskriterium

(Zielstandardabweichung) wird in Konsequenz hieraus die Vergleichsstandardabweichung des enzymatischen Referenzverfahrens aus der Sammlung der OIV (OIV-MA-AS311-02, LwK Nr. 4.5) verwendet. Diese ist bei höheren Gehalten mit etwa 3 % des Messwertes größer als die zu etwa 2 % des Messwertes kodifizierte Vergleichsstandardabweichung des Verfahrens zur Bestimmung der Reduzierenden Stoffe nach Luff-Schoorl (OIV-MA-AS311-01A, LwK Nr. 4.1).

In der Praxis werden die reduktometrischen Verfahren zur Zuckerbestimmung nach wie vor weit verbreitet eingesetzt, so bei dem Prüfgut FT20P01 bei 33 von insgesamt 96 Laborergebnissen mit herkömmlichen Methoden. Sie können – allerdings nur bei Beachtung der Einflüsse des Prüfgutes auf das Ergebnis – trotz im Widerspruch zur OIV-Methode größerer Streuung der reduktometrischen Laborergebnisse zur Ermittlung vergleichbarer Laborergebnisse geeignet sein. Einschränkungen sind – verstärkt in Abhängigkeit von der konkreten Ausgestaltung des reduktometrischen Bestimmungsverfahrens hinsichtlich der Anwendung einer Klärung – vor allem bei Rotweinen mit geringen Zuckergehalten gegeben und zu beachten.

Schließlich wird hier darauf hingewiesen, dass bei Ergebnismitteilung unter Verwendung des amtlichen Formulars zur Qualitätsweinprüfung bei diesem Parameter der in der Zeile "nach Inversion" angegebene Wert ausgewertet wird, selbst wenn keine Saccharose enthalten ist. Wird dieser Wert nicht angegeben, so wird die Angabe in der Zeile "vor Inversion" ausgewertet.

2.4.3.4 Flüchtige Säure

Stand: 02.03.2021

Die Flüchtige Säure ist ein konventioneller, d. h. durch die Bestimmung unter genau einzuhaltenden Untersuchungsbedingungen (OIV-MA-AS313-02, Methode des Typs I) definierter Parameter. Wegen des damit verbundenen hohen Aufwandes wird in der Praxis zunehmend als Ersatzgröße Essigsäure mit Hochleistungsflüssigkeitschromatographie (HPLC) oder enzymatisch bestimmt. Um eine fachlich exakte Trennung der Untersuchungsergebnisse für beide definitionsgemäß und stofflich verschiedenen Parameter zu erreichen, wird der Parameter "Acetat (als Essigsäure)" zusätzlich zum Parameter "Flüchtige Säure" angeboten. Diese Präzisierung ermöglicht den Laboratorien zugleich die Mitteilung von sowohl herkömmlichen als auch FTIR-Untersuchungsergebnissen zu beiden Parametern, wenn auch bei der FTIR-Untersuchung selten Parameterkalibrierungen für Essigsäure eingesetzt werden.

Entsprechend der Definition des Parameters wird regelmäßig um die Mitteilung der Ergebnisse für Flüchtige Säure unter Korrektur des Einflusses der Schwefligen Säure gebeten. Bei der Auswahl bzw. Beschreibung der Untersuchungsmethode ist eine abweichende Angabe möglich. Da die Bestimmung der Sorbinsäure in der Regel nicht Gegenstand dieser Laborvergleichsuntersuchung ist, wird die definitionsgemäß ebenfalls erforderliche Korrektur des Einflusses der Sorbinsäure nicht gefordert. Dementsprechend wird als Bezugswert (wahrer Wert) der Median der unter Korrektur des Beitrages der Schwefligen Säure erhaltenen Laborergebnisse verwendet. Als Leistungskriterium (Zielstandardabweichung) ist es aufgrund der Ergebnisse von Ringuntersuchungen der Deutschen Weinanalytiker sinnvoll, bei Median- bzw. Mittelwerten bis etwa 0,45 g/L die als konzentrationsunabhängig angegebene Vergleichsstandardabweichung des OIV-Verfahrens von ± 0,029 g/L und bei höheren Gehalten die nach Horwitz berechnete erwartete Vergleichsstandardabweichung zur Berechnung der Z-Scores zu verwenden.

2.4.3.5 Acetat (als Essigsäure)

Zur Bestimmung dieses Parameters werden Hochleistungsflüssigkeitschromatographie, manuelle und automatisierte enzymatische Verfahren sowie ¹H-Kernresonanzspektroskopie eingesetzt, wobei die automatisierte enzymatische Bestimmung mit kinetischer Gehaltsbestimmung derzeit überwiegt. Wie bei den vorangegangenen Laborvergleichsuntersuchungen seit mehreren Jahren beobachtet, führt die automatisierte enzymatische Bestimmung gegenüber der Gruppe der übrigen Verfahren (ohne FTIR) zu höheren Werten. Es ist bekannt, dass die Ergebnisse der vorherrschenden Methode zur automatisierten Bestimmung vom pH-Wert bzw. Gesamtsäuregehalt abhängig sind. Bei gemeinsamer Auswertung aller Laborergebnisse prägen die automatisierten enzymatischen Ergebnisse den Bezugswert und die Unterschiede zwischen den Methoden die Streuung der Laborergebnisse. Es ergeben sich häufig Quotienten (s_L/s_{Ziel}), deren Wert stark erhöht oder für die Ermittlung gültiger Z-Scores zu hoch ist. Daher erfolgt in der Regel eine getrennte Auswertung der beiden Ergebnisgruppen.

2.4.3.6 Gesamte Äpfelsäure

Die Bestimmung der Gesamten Äpfelsäure erfolgt überwiegend mittels Hochleistungsflüssigkeitschromatographie. Für dieses Verfahren ist keine aus einem methodenprüfenden Ringversuch abgeleitete Vergleichsstandardabweichung bekannt. Daher wird für diesen Parameter die Zielstandardabweichung aus der Vergleichsstandardabweichung des enzymatischen Bestimmungsverfahrens nach Methode OIV-MA-AS313-11 abgeleitet. Da in Laborvergleichsuntersuchungen regelmäßig erhöhte Werte des Quotienten (s_L/s_{Ziel}) beobachtet werden, stellt sich allerdings die fachliche Frage, ob diese Zielstandardabweichung unter primär analytischem Gesichtswinkel bei normaler Sorgfalt nicht eingehalten werden kann und damit zu streng ist oder ob aus önologischen bzw. wirtschaftlichen Gründen die vorliegende Streuung der Laborergebnisse akzeptiert wird. In diesem Fall ist die Empfehlung aus den Vorjahren zu wiederholen, dass für diesen Parameter ein geeignetes Leistungskriterium in Form einer Standardabweichung entwickelt werden sollte.

2.4.3.7 Reduktone, Freie und Gesamte Schweflige Säure

Zur Bestimmung der Schwefligen Säure finden im Reaktionsprinzip und ihrer Spezifität unterschiedliche Bestimmungsverfahren Anwendung. Während bei den jodometrischen Bestimmungsverfahren grundsätzlich über die Schweflige Säure hinaus, andere unter den Bedingungen des Untersuchungsverfahrens mit Jod reagierende Stoffe, die Reduktone, mit erfasst werden, ist dies bei den Destillations- bzw. photometrischen Verfahren nicht der Fall. Bei Destillationsverfahren mit anschließender acidimetrischer Titration können aber erhöhte Gehalte an Flüchtiger Säure oder bei bestimmten photometrischen Verfahren die Farbstoffe der Rotweine stören. Dies erschwert sowohl die Ermittlung eines geeigneten Bezugswertes als auch die Anwendung einer sachgerechten Zielstandardabweichung und damit letztlich die Bewertung der Laborleistung durch gültige Z-Scores.

Bei der Anwendung jodometrischer Verfahren zur Bestimmung der Schwefligen Säure wird berücksichtigt, dass in Weiß- und Roséweinen ohne Zusatz von Ascorbinsäure der Gehalt an Reduktonen im Bereich der Bestimmungsgrenze der jodometrischen Verfahren liegt und daher

gemäß Abschnitt 2.4.2 keine sinnvolle Bewertung der Laborergebnisse für Reduktone durch Z-Scores möglich ist. Daher wird im Begleitschreiben zu den Proben mitgeteilt, ob im Fall der Anwendung jodometrischer Verfahren eine Bestimmung der Reduktone erforderlich ist bzw. ein Zusatz von Ascorbinsäure erfolgte. Ergänzend wird für Weiß- und Roséweine wegen der Oxydationsempfindlichkeit der Ascorbinsäure bei rascher Abbindung freier Schwefliger Säure durch Aldehyde eine Reaktionszeit von 5 Minuten, dahingegen für Rotweine wegen der verzögerten Abbindung eine Reaktionszeit von 20 Minuten für die Reduktonbestimmung empfohlen.

Für die Mitteilung der Ergebnisse jodometrischer Bestimmungen wurde im Begleitschreiben und dessen Anlage 2 vorgegeben, dass die Mitteilung der Ergebnisse stets so erfolgen sollte, wie dies gegenüber den Kunden in einer **fachlich sachgerechten Form** bzw. nach den Regeln des laboreigenen Qualitätsmanagements geschieht. Dies schließt ein, dass die Ergebnisse hinsichtlich der Berücksichtigung der Reduktone eindeutig zu kennzeichnen sind.

Zur Bewertung der Laborergebnisse für **Reduktone** und **Freie Schweflige Säure** wurde als Leistungskriterium (Zielstandardabweichung) stets die nach Horwitz für ein geeignetes und beherrschtes Analysenverfahren zu erwartende Vergleichsstandardabweichung berechnet. Für die Bewertung der Ergebnisse für Freie Schweflige Säure nach Reduktonabzug wird die Fehlerfortpflanzung durch die Differenzbildung nicht berücksichtigt, sondern aufgrund der Erfahrungen aus den Vorjahren derselbe Wert wie bei der Bewertung der Ergebnisse einschließlich Reduktone verwendet. Als Bezugswert für die Laborergebnisse dient grundsätzlich der Median der jeweils betrachteten Ergebnisse, d. h. für Freie Schweflige Säure der Median der jodometrisch bestimmten Laborergebnisse einschließlich bzw. ausschließlich der Reduktone bzw. der gemeinsame Median der Ergebnisse von Destillations- und photometrischen Verfahren.

Die Berechnung einer Zielstandardabweichung nach Horwitz auf der Basis des stets niedrigeren Median der Werte nach Abzug der Reduktone widerspricht der allgemeinen praktischen Erfahrung, nach der bei der Differenzbildung aus zwei streuenden Untersuchungsergebnissen keine Abnahme der Streuung des resultierenden Wertes zu erwarten ist, es sei denn, dass die Streuung der abzuziehenden Größe (hier Reduktone) die Streuung der Summengröße (hier Schweflige Säure einschließlich Reduktone) prägt. Nach der Erfahrung ergeben sich, insbesondere bei geringen Gehalten an Freier Schwefliger Säure nach Abzug der Reduktone sehr niedrige Werte der Zielstandardabweichung, die fälschlich den Eindruck einer mangelnden Beherrschung der Analytik entstehen lassen.

Für den Parameter **Gesamte Schweflige Säure** wird die gültige Bewertung der Ergebnisse herkömmlicher Methoden durch Bezug auf den Median der Ergebnisse von Destillationsverfahren durchgeführt, da diese definitionsgemäß den wahren Gehalt an Gesamter Schwefliger Säure ergeben. Lediglich zur Information werden die Ergebnisse jodometrischer Bestimmungen jeweils einschließlich und ausschließlich des Beitrags der Reduktone zusätzlich durch den Vergleich mit dem Median der jeweiligen Ergebnisgruppe bewertet. Als Leistungskriterium (Zielstandardabweichung) wurde stets die Vergleichsstandardabweichung des Referenzverfahrens verwendet, weil diese die Erwartung an die Vergleichbarkeit der Laborergebnisse prägt.

3 Gesamtergebnis der Untersuchungen

Die allgemeinen Ausführungen in diesem Abschnitt wie im vorangegangenen Abschnitt gelten für alle in dieser Laborvergleichsuntersuchung bearbeiteten Proben und Parameter. Auf sie wird gegebenenfalls in den weiteren Teilen der Berichterstattung verwiesen. Im Detail wird nachfolgend auf das Gesamtergebnis für das Prüfgut FT20P01 und im folgenden Abschnitt 4 auf prüfgutübergreifende Ergebnisse für einzelne Parameter eingegangen.

3.1 Regeln zur Bewertung des Gesamtergebnisses

Einen laborübergreifenden Überblick über die Untersuchungsergebnisse gibt für jedes Prüfgut eine Zusammenstellung deskriptiv-statistischer Ergebnisse wie hier für die Probe FT20P01 in der nachstehenden Tabelle 4. Soweit in diesen Tabellen zu einem Parameter mehrere Varianten der deskriptiven Berechnungsergebnisse aufgeführt sind, werden diese – sofern nicht selbsterklärend – bei der Diskussion des jeweiligen Parameters besprochen. Bei der Berechnung der beschreibenden statistischen Daten wurde ein Einfluss der Laborergebnisse mit dem FTIR-Verfahren ausgeschlossen. Die Tabellen beschreiben somit das Gesamtergebnis der Laborvergleichsuntersuchung mit herkömmlichen Verfahren (Definition siehe Abschnitt 2.2) für das jeweilige Prüfgut und dienen dessen Bewertung.

Für die Entscheidung über die Eignung der Ergebnisse dieser Laborvergleichsuntersuchung zur Bewertung der Laborleistung sind vorrangig die Ergebnisse der herkömmlichen Untersuchungsverfahren maßgeblich. Die Bewertung der einzelnen Laborleistung durch die Z-Scores nimmt sowohl für die Ergebnisse herkömmlicher als auch der FTIR-Untersuchungen Bezug auf den Median dieser Ergebnisse als 'wahren Wert'. Die Berechnung der Z-Scores erfolgt jedoch in der Regel für herkömmliche und FTIR-Untersuchungsergebnisse mit unterschiedlichen Zielstandardabweichungen. Daher enthält Tabelle 4 wie die entsprechenden Tabellen für die weiteren Prüfgüter für Parameter, die mit dem FTIR-Verfahren bestimmt wurden, in jeder der beiden Spalten "Zielstdabw. exp. herk. s_{exp}" und "Zielstdabw. exp. FTIR s_{Ü FTIR}" einen Eintrag. Dies berücksichtigt die Empfehlungen des "Wissenschaftlichen Arbeitsausschusses FTIR-Kalibrierung für die amtliche Weinanalytik" (siehe auch Abschnitt 2.4.1).

Grundlagen der Bewertung des Gesamtergebnisses sind bei allen Proben:

- (1.) die Anzahl resp. der Anteil ausgeschlossener Ergebnisse,
- (2.) die Quotienten s_L/s_{Ziel} aus der Standardabweichung zwischen den Laborergebnissen (s_L) geteilt durch die Zielstandardabweichung (s_{Ziel}) . Verwendet werden für die Ergebnisse herkömmlicher Verfahren nach Horwitz berechnete Zielstandardabweichungen (s_H) bzw. experimentelle Zielstandardabweichungen (s_{exp}) , die als Vergleichsstandardabweichung in Methoden prüfenden Ringversuchen ermittelt wurden, und für die Ergebnisse des FTIR-Verfahrens experimentelle, Matrixeffekte berücksichtigende Zielstandardabweichungen (s_{UFTIR}) .
- (3.) der Quotient aus der einfachen Unsicherheit (u_M) bzw. dem Standardfehler $(s_L/\sqrt{N} = u_M)$ des Mittelwertes der bereinigten Daten und der maßgeblichen Zielstandardabweichung (Spalte " u_M/s_{Ziel} " und " $u_M/s_{\bar{U}}$ FTIR"). Dieser beschreibt für jeden Parameter die Zuverlässigkeit des den 'wahren Wert' vertretenden Bezugswertes.

Maßgeblich für die Anwendung dieser Kriterien ist bei mehreren Varianten der deskriptiven Berechnungsergebnisse zu einem Parameter nur die für die Bewertung der Laborleistung herangezogene.

Als offensichtlich fehlerhaft und bei allen Berechnungen nicht zu berücksichtigen, gelten Ergebnisse, die in fehlerhaften Einheiten mitgeteilt wurden. Unberücksichtigt bleiben auch Ergebnisse, die um mehr als 50 % vom Median abweichen. Sofern solche Werte vorlagen, ist ihre Anzahl in der Spalte "Alle Werte" der Tabellen der deskriptiv-statistischen Kennzahlen, hier der Tabelle 4, in Klammern angegeben und nicht in der davor stehenden Anzahl enthalten. Bei der Bewertung des Gesamterfolges ausgeschlossen werden ferner Ergebnisse, die um mehr als das Fünffache der Zielstandardabweichung vom Median abweichen und daher mit einem Z-Score, dessen Absolutbetrag den Wert 5 überschreitet (|z| > 5), bewertet werden. Die Tabellen enthalten dann zu dem jeweiligen Parameter in den Spalten "Alle Werte" und "Gültige Werte" unterschiedliche Zahlen. Der Anteil der wegen überhöhter Z-Scores oder mehr als 50 % Abweichung vom Median ausgeschlossenen Ergebnisse soll weniger als 22,2 % betragen.

Von den Quotienten aus Laborstandardabweichung und Zielstandardabweichung sind diejenigen entscheidend, die bei Einhaltung der zulässigen Ausschlussquote nach dem Ausschluss extremer Einzelergebnisse erhalten werden. Daher sind nur diese in den Tabellen der deskriptiv-statistischen Kennzahlen, hier der Tabelle 4, aufgeführt. Vorrang hat der Quotient mit der experimentell ermittelten gegenüber der nach Horwitz berechneten Zielstandardabweichung.

Diese Quotienten sollen unter 1,5 liegen und den Wert 2,0 nicht überschreiten. Andernfalls ist außerhalb der Aufgabenstellung einer Laborvergleichsuntersuchung fachlich zu prüfen, ob die angewendeten Untersuchungsmethoden nicht geeignet sind, nicht beherrscht werden oder die Zielstandardabweichung zu streng gewählt wurde. In Umkehrung dieser Regel ist anzunehmen, dass die Zielstandardabweichung zu großzügig gewählt wurde, wenn der Wert des Quotienten unter 0,5 liegt.

Die Quotienten aus der Laborstandardabweichung und der experimentell ermittelten, Matrix Effekte berücksichtigenden Zielstandardabweichung für die FTIR-Ergebnisse (s_L/s_Ü _{FTIR}) sind – meist deutlich – niedriger als die vorstehend besprochenen, weil diese Zielstandardabweichungen mit wenigen Ausnahmen einen größeren Betrag als die Zielstandardabweichungen für die Ergebnisse der herkömmlichen Analytik aufweisen. Daher ist unter diesem Aspekt die Gültigkeit der Z-Scores für die Bewertung der Laborleistung bei den FTIR-Messungen meist gegeben.

Der Quotient "u_M/s_{Ziel}" beschreibt die (relative) Zuverlässigkeit des Bezugswertes. Nach der Norm ISO 13528 sind Auswertungen und damit Z-Scores uneingeschränkt gültig, wenn der Quotient (bei Rundung auf eine Stelle) nicht über 0,3 liegt. Dann ist gewährleistet, dass die Unsicherheit des Bezugswertes die Bewertung nicht beeinträchtigt. Liegt der Quotient zwischen 0,3 und 0,5 wird auf die eingeschränkte Sicherheit des Bezugswertes hingewiesen. Quotienten im angesprochenen Bereich treten gehäuft auf, wenn nur eine geringe Anzahl und zugleich eine relativ große Streuung der Laborergebnisse vorliegen. Für die Bewertung der FTIR-Messergebnisse wird ausweislich der Werte in der Spalte "u_M/s_{Ü FTIR}" der Tabellen für alle Proben die erforderliche Zuverlässigkeit problemlos erreicht.

Werden alle drei Bedingungen erfüllt, kann in der Regel davon ausgegangen werden, dass die angewendeten Analysenverfahren beherrscht wurden, im gegebenen Konzentrationsbereich zur Bestimmung der Parameter geeignet sind und geeignete Zielstandardabweichungen gewählt wurden.

3.2 Gesamtergebnis für das Schaumweinprüfgut (FT20P01)

Bei dem Prüfgut FT20P01 traten bei der Mehrzahl der Parameter keine oder bis zu zwei auszuschließende Laborergebnisse auf. Es handelte sich sowohl um grob fehlerhafte, um mehr als 50 % vom Median abweichende Werte als auch Laborergebnisse mit einem absoluten Betrag des Z-Score über 5. Eine höhere Anzahl als zwei auszuschließende Laborergebnisse ergab sich für die Parameter Gesamtsäure, Flüchtige Säure, Reduktone und Überdruck.

Bei den Parametern **Gesamtsäure** und **Überdruck** wichen drei ausgeschlossene Ergebnisse um mehr als 5 Z-Score-Einheiten vom Median ab, während beim Parameter **Reduktone** drei Ergebnisse um mehr als 50 % vom Median abwichen. Mit vier ausgeschlossenen Ergebnissen wies der Parameter Flüchtige Säure bei Berücksichtigung nur der unter Ausschluss des Einflusses der Schwefligen Säure erhaltenen Laborergebnisse den höchsten Anteil ausgeschlossener Ergebnisse auf. Der Höchstanteil von 22,2 % wurde bei keinem Parameter überschritten.

Der Richtwert von 1,5 für den Quotienten s_L/s_{Ziel} wurde bei den Ergebnissen herkömmlicher Analytik überwiegend eingehalten. Im Toleranzbereich erhöhte Werte für den Quotienten s_L/s_{Ziel} ergaben sich bei den Parametern **pH-Wert, Flüchtige Säure** bei Anwendung einer Ausschlussgrenze für den Z-Score von 4,5, **Gesamte Äpfelsäure, L-Äpfelsäure, Gesamte Milchsäure** sowie bei jodometrischer Bestimmung der **Gesamten Schwefligen Säure** und **Kohlensäure**. Der Höchstwert von 2,0 wurde nur bei den Ergebnissen der automatisierten enzymatischen Bestimmung von **Acetat** und der **Reduktone** überschritten.

Erläuterungen zur Tabelle 4:

Stand: 02.03.2021

Blau markierte Daten sind auffällig und werden diskutiert. **Rot** markierte Daten weisen auf die Überschreitung von im Abschnitt 3.1 genannten Grenzen hin.

Alle Werte: in Klammern ist die Anzahl der um mehr als 50 % vom Median abweichenden Laborwerte angegeben. Sie sind in der vorstehenden Zahl nicht enthalten.

Labor-Stdabw. (s_L) = Standardabweichung der Ergebniswerte zwischen den Laboratorien

Zielstdabw. n. Horwitz (s_H) = Zielstandardabweichung berechnet nach Horwitz

Zielstdabw. exp. herk. (s_{exp}) = Zielstandardabweichung aus experimentellen Daten für herkömmliche Methoden (in der Regel aus der OIV-Methodensammlung)

Zielstdabw. exp. FTIR (sü _{FTIR}) = Zielstandardabweichung aus experimentellen Daten für die Bewertung der Ergebnisse des FTIR-Verfahrens (Empfehlung des Wissenschaftlichen Arbeitsausschusses)

Quotient (s_L/s_H) = Quotient aus der Standardabweichung zwischen den Laboratorien und der Zielstandardabweichung n. Horwitz

Quotient (s_L/s_{exp}) = Quotient aus der Standardabweichung zwischen den Laboratorien und der Zielstandardabweichung aus experimentellen Daten, z. B. methodenprüfenden Ringversuchen

Quotient ($s_L/s_{\ddot{U}\ FTIR}$) = Quotient aus der Standardabweichung zwischen den Laboratorien und der Zielstandardabweichung für die Bewertung der Ergebnisse des FTIR-Verfahrens

Quotient (u_M/s_{Ziel}) = Quotient aus dem Standardfehler des Mittelwertes (u_M) und der Zielstandardabweichung für die Bewertung der Ergebnisse herkömmlicher Methoden

Quotient (u_M/s_{\ddot{U}\ FTIR}) = Quotient aus dem Standardfehler des Mittelwertes (u_M) und der Zielstandardabweichung für die Bewertung der Ergebnisse des FTIR-Verfahrens

Tabelle 4: Deskriptiv-statistische Kennzahlen der Ergebnisse mit herkömmlichen Methoden für die Schaumweinprobe (FT20P01)

Parameter	alle	gültige	Mittel-	Median-	Labor-	Labor-	Zielsta	andardabweich	nungen			Quotienten		
	Werte	Werte	Wert	Wert	Stdabw.	Stdfehler	n. Horwitz	exp. herk.	exp. FTIR	s _L /s _H	S _L /S _{exp}	S _L /	u_{M}/s_{Ziel}	u _M /
					S_L	u_{M}	S_H	S _{exp}	S _{Ü FTIR}			S _{Ü FTIR}		Sü FTIR
Relative Dichte 20 °C/20 °C	104	100	1,00215	1,00211	0,000149	0,000015		0,000132	0,000190		1,13	0,78	0,11	0,08
Gesamtalkohol [g/L]	86	86	95,96	96,00	0,849	0,0916	2,732	1,063		0,31	0,80		0,09	
Vorhandener Alkohol [g/L]	38	38	84,16	84,30	0,646	0,1048	2,446	0,535	0,886	0,26	1,21	0,73	0,20	0,12
Gesamtextrakt [g/L]	97	97	42,53	42,60	0,578	0,0587	1,370	0,594		0,42	0,97		0,10	
Zuckerfreier Extrakt [g/L]	86	86	18,19	18,20	0,930	0,1003	0,665	1,048		1,40	0,89		0,10	
Vergärbare Zucker [g/L]	63	63	24,41	24,40	0,539	0,0679	0,853	0,702		0,63	0,77		0,10	
Glucose [g/L]	61	61	12,02	12,00	0,292	0,0373	0,467	0,367	0,408	0,62	0,79	0,71	0,10	0,09
Fructose [g/L]	60	60	12,42	12,47	0,283	0,0365	0,482	0,379		0,59	0,74		0,10	
Glycerin [g/L]	24	24	5,068	5,070	0,159	0,0325	0,225	•	0,348	0,71		0,46	0,14	0,09
pH-Wert	54	54	3,043	3,050	0.0901	0.0123		0.0476	0.0493		1,89	1,83	0,26	0,25
Gesamtsäure [g/L]	97	94	5,802	5,800	0,159	0,0164	0,252	0,107	0,145	0,63	1,49	1,10	0,15	0,11
Weinsäure [g/L]														
- nur HPLC + IC	11 (1)	11	2,093	2,086	0,112	0,0337	0,106			1,06			0,32	
 alle herkömmlichen Verfahren 	34 (1)	34	2,134	2,120	0,139	0,0238	0,107		0,227	1,30		0,61	0,22	0,10
Flüchtige Säure [g/L], SO ₂ korrigiert	()		•	,	,	ŕ	ŕ		,	•		•	•	•
- zMax 5,0	27 (1)	26	0,3017	0.3180	0.0634	0.0124	0.0214	0.0286	0.089	2,97	2,22	0,71	0,44	0,14
- zMax 4,5	27 (1)	24	0,3118	0,3200	0,0546	0,0111	0,0215	0.0286	0,089	2,54	1,91	0,61	0,39	0,13
Acetat als Essigsäure [g/L]	()		•	,	,	ŕ	ŕ	,	,	•	, i	•	•	•
- enz. aut., zMax 5,0	25	24	0,2001	0,1950	0,0321	0.0065	0.0141			2,27			0.46	
- enz. aut., zMax 4,5	25	23	0,1970	0,1900	0,0290	0,0061	0,0138			2,10			0,44	
- enz. man. + NMR	9	9	0,1513	0,1558	0,0175	0.0058	0.0117			1,50			0,50	
Gesamte Äpfelsäure [g/L]	10	9	1,586	1,60	0,108	0.0360	0.0845	0.0586	0.218	1,28	1,84	0,50	0,61	0,17
L-Äpfelsäure [g/L]	35	35	1,546	1,51	0,0987	0,0167	0.0803	0.0563	,	1,23	1,75	•	0,30	•
Gesamte Milchsäure [g/L]	18	16	0,4628	0,4685	0,0533	0,0133	0.0297	,	0.209	1,79		0,25	0,45	0.06
L-Milchsäure [g/L]	33 (1)	33	0,3212	0,3100	0,0410	0.0071	0,0209	0.0314		1,96	1,31	•	0,23	
Reduktone [mg/L]	82 (3)	82	11,99	12,00	2,75	0,304	1,32	,		2,08	,		0,23	
Freie Schweflige Säure [mg/L]	()									•				
- Dest. + Phot.	24	24	27,45	27,25	2,79	0,569	2,65			1,05			0,21	
- jodometrisch incl. Reduktone	46	46	34,52	35,13	3,65	0,539	3,29			1,11			0,16	
- jodometrisch excl. Reduktone	39	39	25,63	25,00	4,58	0,734	2,46	3.29		1,86	1,39		0,22	
Gesamte Schweflige Säure [mg/L]			•	,	,	ŕ	,	,		•	,		•	
- Destillationsverfahren	48	48	160,17	161,30	6.99	1,01	12,01	5.36	12,01	0.58	1,30	0.58	0.19	0,08
- jodometrisch incl. Reduktone	32	32	160,11	162,00	10,27	1,82	12,05	5,36	, -	0,85	1,92	- ,	0,34	- ,
- jodometrisch excl. Reduktone	23	23	156,50	157,00	7,24	1,51	11,74	5,36		0,62	1,35		0,28	
Kohlensäure(CO ₂) [g/L]	13	13	9,011	9,250	0,607	0,168	0,374	0,347		1,62	1,75		0,48	
Überdruck [bar]	79	76	5,370	5,350	0,369	0,0423	•	0,246		•	1,50		0,17	

Landwirtschaftskammer Rheinland-Pfalz

Trotz erhöhter Werte des Quotienten s_L/s_{Ziel} resultieren bei den Parametern **pH-Wert** und **L-Äpfelsäure**, bedingt durch die große Anzahl vorliegender Laborergebnisse, unauffällige Werte des Quotienten " u_M/s_{Ziel} ". Die Zuverlässigkeit der Bezugswerte ist gegeben. Dahingegen weisen die Parameter **Flüchtige Säure**, **Gesamte Milchsäure** und **Kohlensäure** zugleich mäßig erhöhte Werte des Quotienten " u_M/s_{Ziel} " auf. Die Zuverlässigkeit des Bezugswertes ist bei der geringen Anzahl an Untersuchungsergebnissen ferner nicht gegeben für den Parameter **Gesamte Äpfelsäure**. Diese Einschränkung ist bei einer kritischen Betrachtung der Z-Scores zugunsten des Teilnehmers zu berücksichtigen.

Bei zusammenfassender Betrachtung aller Kriterien zur Ermittlung **gültiger Z-Scores** ergibt sich, dass für **alle Parameter** – ausgenommen automatisiert bestimmtes Acetat und Reduktone und eingeschränkt für Gesamte Äpfelsäure – **eine aussagekräftige Bewertung** der Laborleistung **durch die Z-Scores** gegeben ist.

Von den 87 teilnehmenden Laboratorien, die durch die Landwirtschaftskammer zugelassen sind, wurden die Parameter der amtlichen Qualitätsweinanalyse mit herkömmlichen Methoden zwischen einmal (Vergärbare Zucker) und sechsmal (Gesamtsäure und Gesamte Schweflige Säure) nicht erfolgreich bestimmt, d. h. der Absolutbetrag des Z-Scores überschritt den Wert 3 (|Z| > 3). Dazwischen lagen die Laborergebnisse für Dichte, Vorhandenen Alkohol und Freie Schweflige Säure (je drei falsche Ergebnisse). Eine starke Häufung fehlerhafter Ergebnisse wie für den Parameter Vergärbare Zucker im Vorjahr ergab sich also für keinen Parameter. Die erhöhte Fehleranzahl beim Parameter Gesamtsäure beruht vor allem auf zu hohen Ergebnissen, die wiederum auf eine unzureichende Entfernung der Kohlensäure zurückzuführen sein dürften. Insgesamt ist die Fehlerhäufigkeit mit 23 fehlerhaften Werten gegenüber insgesamt 51 im Vorjahr weniger als halb so hoch.

4 Anmerkungen zu den Untersuchungsergebnissen mit herkömmlichen Methoden für einzelne Parameter bei allen Prüfgütern

Bei einigen Parametern sind zu den Untersuchungsergebnissen mit herkömmlichen Methoden weitergehende Anmerkungen unter Berücksichtigung der Ergebnisse an allen Prüfgütern sinnvoll. Sind nur einzelne Prüfgüter betroffen, erfolgen die Ausführungen in den weiteren Teilen des Berichtes.

4.1 Weinsäure

Stand: 02.03.2021

Eine Zusammenfassung der Gesamtergebnisse zu diesem Parameter für alle Prüfgüter gibt die Tabelle 5. In dieser sind die Anzahl der berücksichtigten Laborergebnisse, der jeweilige Mittelwert, die Standardabweichung der Laborergebnisse (StdAbw s_L) und die Kenndaten zur Methodenbeherrschung (Quotient s_L/s_{Ziel}) und Zuverlässigkeit des Bezugswertes (Quotient u_M/s_{Ziel}) zusammengefasst.

Tabelle 5: Ergebnisse der Bestimmung der Weinsäure [g/L]

Probe	gültige Werte ^(*)	Mittelwert	StdAbw s _L	Quotient s _L /s _{Ziel}	Quotient u _M /s _{Ziel}
FT20P01	34 (1)	2,134	0,139	1,30	0,22
FT20P02	29 (1)	2,405	0,244	2,07	0,38
FT20P03	29 (1)	1,828	0,144	1,56	0,29
FT20P04	30 (1)	1,804	0,217	2,31	0,42
FT20P05	30 (2)	2,756	0,219	1,63	0,30

^(*) In dieser Spalte steht in Klammern die zusätzliche Anzahl ausgeschlossener Laborergebnisse.

Die in der Spalte 'Gültige Werte' jeweils in Klammern angegebene Anzahl an (zusätzlichen) Laborergebnissen wurde ausgeschlossen, weil der absolute Betrag des Z-Scores über 5 lag bzw. bei den Prüfgütern FT20P01 und FT20P03 jeweils ein Laborergebnis um mehr als 50 % vom Median abwich.

Die Gesamtergebnisse für diesen Parameter fielen bei den Prüfgütern in Abhängigkeit von der Weinart unterschiedlich aus. Für die Weißweinprüfgüter **FT20P01** und **FT20P05** sowie das Roseweinprüfgut **FT20P03** wurden bei gemeinsamer Auswertung der Untersuchungsergebnisse mittels HPLC und Photometrie Werte des Quotienten s_L/s_{Ziel} unter bzw. wenig über der Warnschranke 1,5 und damit uneingeschränkt **gültige Z Scores** erhalten. Bei den Rotweinprüfgütern FT20P02 und FT20P04 war die Streuung der Laborergebnisse erheblich größer. Ein Wert des Quotienten s_L/s_{Ziel} wenig unter der Höchstgrenze von 2,0 und damit **gültige Z-Scores** wurde bei dem Prüfgut **FT20P02** erst nach Anwendung eines absoluten Betrages des Z-Scores von 4,5 als Ausschlussgrenze erreicht. Bei dem Prüfgut **FT20P04** wurde bei allen Auswertungsvarianten der Höchstwert von 2,0 überschritten. Es wurden somit **keine gültigen Z-Scores** erhalten.

4.2 Flüchtige Säure und Acetat

4.2.1 Flüchtige Säure

Stand: 02.03.2021

Die Auswertung der Laborergebnisse für diesen in der Regel nicht unproblematischen Parameter erfolgte gemäß den im Abschnitt 2.4.3.4 dargestellten Regeln. Der Medianwert 0,45 g/L wurde bei den Prüfgütern **FT20P01** und **FT20P03** unterschritten und bei dem Prüfgut FT20P02 erreicht. Daher wurde für diese die Zielstandardabweichung ± 0,029 g/L angewandt. Bei den Prüfgütern **FT20P04** und **FT20P05**, bei denen der Medianwert über 0,45 g/L lag, wurde die Zielstandardabweichung nach Horwitz berechnet. Das Prüfgut FT20P05 enthielt zwar Sorbinsäure, jedoch wurde entsprechend den oben zitierten Regeln auf eine Korrektur für deren Übergang in das Destillat verzichtet. Das Gesamtergebnis ist in Tabelle 6 zusammengefasst.

Tabelle 6: Ergebnisse der Bestimmung der Flüchtigen Säure [g/L]

Probe	gültige Werte	Mittelwert	StdAbw s _L	Quotient s _L /s _{Ziel}	Quotient u _M /s _{Ziel}
FT20P01	26 (2)	0,3017	0,0634	2,22	0,44
FT20P02	21	0,4764	0,0550	1,93	0,42
FT20P03	18 (2)	0,3065	0,0587	2,05	0,48
FT20P04	24	0,6312	0,0607	1,58	0,32
FT20P05	21 (2)	0,6053	0,0772	2,12	0,46

^(*) In dieser Spalte steht in Klammern die zusätzliche Anzahl ausgeschlossener Laborergebnisse.

Die in der Spalte 'Gültige Werte' jeweils in Klammern angegebene Anzahl an (zusätzlichen) Laborergebnissen wurde ausgeschlossen, weil entweder der absolute Betrag des Z-Scores über 5 lag oder das Laborergebnis um mehr als 50 % vom Median abwich. Der Richtwert 1,5 für den Quotienten aus Laborstandardabweichung und Zielstandardabweichung s_L/s_{Ziel} wurde stets und der Höchstwert 2,0 bei den Prüfgütern FT20P01, FT20P03 und FT20P05 überschritten. Der Höchstwert wurde aber bei Ausschluss einzelner stark abweichender Werte durch eine Senkung der Ausschlussgrenze auf einen absoluten Wert des Z-Scores von 4,5 bei den Prüfgütern FT20P01 mit 1,91 und FT20P03 mit 1,74 noch eingehalten. Die Zuverlässigkeit der Bezugswerte ist bei vier der fünf Prüfgüter eingeschränkt. Somit konnten mit Einschränkungen für vier der fünf Prüfgüter **noch gültige Z-Scores** erhalten werden, während dies für das **Prüfgut FT20P05 nicht** möglich war. Eine Verbesserung der Vergleichbarkeit ist daher wünschenswert.

4.2.2 Acetat (als Essigsäure) [g/L]

Für diesen Parameter wurden je Prüfgut insgesamt zwischen 38 und 44 Laborergebnisse eingesandt. Jeweils 20 bis 25 Laborergebnisse wurden automatisiert enzymatisch bestimmt. Jeweils 7 Ergebnisse wurden mittels ¹H-Kernresonanzspektroskopie (¹H-NMR), 6 mittels Fourier-Transform-Infrarot-Spektroskopie (FTIR) und 2 mittels manueller enzymatischer Bestimmung erhalten. Eine Bestimmung mittels Hochleistungsflüssigkeitschromatographie wurde bei 3 bis 5 Ergebnissen für jedes Prüfgut mitgeteilt.

Tabelle 7: Gesamtergebnisse der Bestimmung von Acetat [g/L]

		enzyma	atisch, auton	natisiert		¹ H-NMR + enzymatisch manuell				
Prüfgut	gültige Werte	Mittel-	StdAbw	Quot	ienten	gültige Werte	Mittel-	StdAbw	Quot	ienten
		wert	S_L	s _L /s _{Ziel}	$u_{\text{M}}/s_{\text{Ziel}}$		wert	S_L	s _L /s _{Ziel}	u _M /s _{Ziel}
FT20P01	24	0,2001	0,0321	2,27	0,46	9	0,1513	0,0175	1,50	0,50
FT20P03	23	0,2673	0,0338	1,88	0,39	9	0,2212	0,0213	1,32	0,44
FT25P05	22	0,5162	0,0588	1,78	0,38	9	0,4626	0,0383	1,27	0,42
		alle herk	ömmlichen V	/erfahren						
Prüfgut	gültige	Mittel-	StdAbw	StdAbw Quotienten						
	Werte	wert	S_L	$s_L/s_{Ziel} \\$	$u_{\text{M}}/s_{\text{Ziel}}$					
FT20P02	24 (1)	0,3991	0,0464	1,77	0,36					
FT20P04	30	0,5731	0,0617	1,71	0,31					

^(*) In dieser Spalte steht in Klammern die zusätzliche Anzahl ausgeschlossener Laborergebnisse.

Aus den im Abschnitt 2.4.3.5 dargelegten Gründen erfolgte, ausgenommen die beiden auf der Basis der Ergebnisse aller herkömmlichen Verfahren bewerteten Rotwein-Prüfgüter FT20P02 und FT20P04, eine getrennte Bewertung für Ergebnisse der automatisierten enzymatischen Bestimmungen und der Ergebnisse der anderen Bestimmungsverfahren. Die Bewertungsgrößen für diese anderen Verfahren wurden auf der Grundlage der Ergebnisse mittels ¹H-NMR und manueller enzymatischer Bestimmung ermittelt. HPLC-Ergebnisse blieben unberücksichtigt, da deren Streubreite zu groß war. Das Gesamtergebnis der differenzierten Auswertung zeigt Tabelle 7.

Für die Ergebnisse der automatisierten enzymatischen sowie aller herkömmlichen Verfahren ergeben sich Quotienten (s_L/s_{Ziel}), deren Wert stark erhöht und im Falle des Prüfgutes FT20P01 für die Ermittlung gültiger Z-Scores zu hoch ist. Die Bewertungsgröße s_L/s_{Ziel} für die auf der

Grundlage der Ergebnisse mittels ¹H-NMR und manueller enzymatischer Bestimmung ermittelten Ergebnisse war unauffällig. Die Zuverlässigkeit des Bezugswertes war bei den Ergebnissen automatisiert enzymatischer sowie aller herkömmlichen Verfahren aufgrund deren großer Streuung und bei der anderen Ergebnisgruppe nur wegen der geringen Ergebnisanzahl etwas eingeschränkt. Für alle Datengruppen mit Ausnahme der automatisiert enzymatischen Laborergebnisse bei dem Prüfgut FT20P01 konnten auf der Basis der Quotienten s_L/s_{Ziel} **gültige Z-Scores** ermittelt werden. Bei deren Bewertung ist in Grenzfällen die geringfügig eingeschränkte Zuverlässigkeit der Bezugswerte zu berücksichtigen.

4.3 Gesamte Äpfelsäure und L-Äpfelsäure

Für den Parameter **Gesamte Äpfelsäure** lag je Prüfgut mit 8 bis 12 nur eine geringe Anzahl Laborergebnisse vor. Diese wurden meist mit Hochleistungsflüssigkeitschromatographie erhalten. Die geringste Anzahl an Laborergebnissen, davon die Hälfte unter der Bestimmungsgrenze, wurde zum Prüfgut **FT20P02** mitgeteilt. Von einer Auswertung dieser Ergebnisse wurde daher abgesehen. Das Gesamtergebnis für die anderen Prüfgüter ist in Tabelle 8 zusammengefasst.

Tabelle 8: Ergebnisse der Bestimmung von Gesamter Äpfelsäure [g/L]

Probe	gültige Werte	Mittelwert	StdAbw s _L	Quotient s _L /s _{Ziel}	Quotient u _M /s _{Ziel}
FT20P01	9 (1)	1,586	0,108	1,84	0,61
FT20P02	Gehalt unter der Anwe	endungsgrenze	der Bestimmu	ngsverfahren	
FT20P03	8 (1)	0,7093	0,0491	1,35	0,48
FT20P04	9 (3)	0,2633	0,0456	1,82	0,61
FT20P05	11 (1)	1,828	0,139	2,14	0,64

^(*) In dieser Spalte steht in Klammern die zusätzliche Anzahl ausgeschlossener Laborergebnisse.

Die Spanne der in den Prüfgütern vorliegenden Gehalte deckt den Bereich der in der Praxis auftretenden Werte ab. Die Quotienten s_L/s_{Ziel} liegen jedoch bei den Prüfgütern FT20P01 und FT20P04 im mäßig erhöhten Bereich zwischen 1,5 und 2,0. Bei dem Prüfgut **FT20P05** wurde der Höchstwert 2,0 für den Quotienten s_L/s_{Ziel} überschritten. Für dieses Prüfgut konnten somit **keine gültigen Z-Scores** ermittelt werden.

Die **Zuverlässigkeit** der Bezugswerte ist infolge der geringen Ergebnisanzahl eingeschränkt und bei den Prüfgütern FT20P01, FT20P04 und FT20P05 nicht gegeben. Bei Prüfgütern, die wie im vorliegenden Fall keinen Zusatz von D-Äpfelsäure erfahren haben, ist für die Parameter Gesamte und L-Äpfelsäure eine weitgehende Übereinstimmung der Bezugswerte bzw. Mittelwerte zu erwarten. Dies bestätigt ein Vergleich der in Tabelle 8 mit den in Tabelle 9 zusammengestellten Mittelwerten für alle Prüfgüter. Die Mittelwerte für L-Äpfelsäure sichern damit die Bezugswerte für die Bewertung der Laborergebnisse für Gesamte Äpfelsäure ab. Aus fachlicher Sicht sind daher die **Z-Scores** für die Prüfgüter FT20P01, FT20P04 und FT20P05 **gültig**. Unabhängig von diesen Überlegungen ist für die Bewertung der FTIR-Untersuchungsergebnisse die Unsicherheit der Bezugswerte in Anbetracht der angewandten, Matrixeffekte berücksichtigenden Zielstandardabweichung bei Gehalten über der Untergrenze des Anwendungsbereiches der FTIR-Methode stets ausreichend.

Die Gesamtergebnisse für den überwiegend automatisiert enzymatisch bestimmten Parameter L-Äpfelsäure sind in der Tabelle 9 zusammengefasst. Die Quotienten s_L/s_{Ziel} lagen mit einer Ausnahme über dem Richtwert 1,5 und sind damit leicht erhöht. Es ist jedoch zu berücksichtigen, dass der Betrag der experimentellen Zielstandardabweichung erheblich unterhalb des nach der Regel von Horwitz zu erwartenden Wertes der Vergleichsstandardabweichung liegt und daher sehr fordernd ist. Infolge der gegenüber dem Parameter Gesamte Äpfelsäure etwa dreimal so hohen Anzahl an Laborergebnissen ist die Zuverlässigkeit der Bezugswerte stets gegeben. Die **Z-Scores** sind **uneingeschränkt gültig**.

Tabelle 9: Ergebnisse der Bestimmung von L-Äpfelsäure [g/L]

Probe	gültige Werte	Mittelwert	StdAbw s _L	Quotient s _L /s _{Ziel}	Quotient u _M /s _{Ziel}
FT20P01	35	1,546	0,0987	1,75	0,30
FT20P02	28 (2)	0,1234	0,0365	1,74	0,33
FT20P03	34 (1)	0,7000	0,0571	1,60	0,27
FT20P04	35	0,3281	0,0344	1,32	0,22
FT20P05	31 (1)	1,820	0,123	1,92	0,35

^(*) In dieser Spalte steht in Klammern die zusätzliche Anzahl ausgeschlossener Laborergebnisse.

4.4 Gesamte Milchsäure und L-Milchsäure

Die Gehalte an **Gesamter Milchsäure** lagen bei den in dieser Laborvergleichsuntersuchung eingesetzten Prüfgütern in den für die jeweilige Weinart typischen Bereichen. Je Prüfgut wurden rund 18 Laborergebnisse mitgeteilt, die etwa zu gleichen Anteilen mittels HPLC und enzymatisch ermittelt wurden. Die Tabelle 10 gibt eine Übersicht der Gesamtergebnisse für alle Prüfgüter.

Tabelle 10: Ergebnisse der Bestimmung von Gesamter Milchsäure [g/L]

Probe	gültige Werte	Mittelwert	StdAbw s _L	Quotient s _L /s _{Ziel}	Quotient u _M /s _{Ziel}
FT20P01	16 (2)	0,4628	0,0533	1,79	0,45
FT20P02	15 (1)	1,645	0,157	1,84	0,48
FT20P03	16 (1)	1,962	0,114	1,15	0,29
FT20P04	17 (1)	3,134	0,163	1,08	0,26
FT20P05	16 (3)	0,6233	0,0540	1,45	0,36

^(*) In dieser Spalte steht in Klammern die zusätzliche Anzahl ausgeschlossener Laborergebnisse.

Der Gehalt an Gesamter Milchsäure lag bei allen Prüfgütern oberhalb der Bestimmungsgrenze der genannten Analysenverfahren. Für die Mehrzahl der Prüfgüter wurden auf der Basis der nach Horwitz berechneten Zielstandardabweichungen Werte des Quotienten s_L/s_{Ziel} unterhalb der Warnschranke 1,5 erhalten. Lediglich bei den Prüfgütern **FT20P01** und **FT20P02** wurden mäßig erhöhte Werte bei 1,8 erhalten. Die Zuverlässigkeit des Bezugswertes war bei diesen Prüfgütern sowie dem Prüfgut FT20P05 geringfügig eingeschränkt. Es konnten daher für alle Prüfgüter **gültige Z-Scores** erhalten werden.

Zum Parameter **L-Milchsäure** wurden jeweils 30 bis 34 Laborergebnisse mitgeteilt. Die Tabelle 11 gibt eine Übersicht über die statistisch auswertbaren Ergebnisse.

Tabelle 11: Ergebnisse der Bestimmung von L-Milchsäure [g/L]

Probe	gültige Werte	Mittelwert	StdAbw s _L	Quotient s _L /s _{Ziel}	Quotient u _M /s _{Ziel}
FT20P01	33 (1)	0,3212	0,0410	1,31	0,23
FT20P02	31	1,343	0,103	1,33	0,24
FT20P03	34	1,698	0,0968	1,04	0,18
FT20P04	32 (2)	2,559	0,168	1,28	0,23
FT20P05	28 (3)	0,5301	0,0574	1,41	0,27

^(*) In dieser Spalte steht in Klammern die zusätzliche Anzahl ausgeschlossener Laborergebnisse.

Die Quotienten s_L/s_{Ziel} sind unauffällig und überschreiten nicht die Warnschranke 1,5 und auch die Quotienten u_M/s_{Ziel} zeigen eine uneingeschränkte Zuverlässigkeit des Bezugswertes an. Die **Z-Scores** sind für alle Prüfgüter uneingeschränkt **gültig**. Insgesamt präsentiert sich das Gesamtergebnis für diesen Parameter besser als für den Parameter Gesamte Milchsäure.

4.5 Schweflige Säure und Reduktone

Die im Rahmen dieser Laborvergleichsuntersuchung zum Erhalt vergleichbarer und bewertbarer Ergebnisse für die Parameter Reduktone, Freie und Gesamte Schweflige Säure zu beachtenden Regeln wurden im Abschnitt 2.4.3.7 behandelt. Nachfolgend werden deren Einhaltung sowie das laborübergreifende Gesamtergebnis für diese Parameter besprochen.

4.5.1 Reduktone

Bei den in dieser Laborvergleichsuntersuchung eingesetzten Prüfgütern ergaben die Voruntersuchungen bei allen Prüfgütern bestimmbare Reduktongehalte, die z. T. auf einen Zusatz von Ascorbinsäure im Herstellungsprozess deuten. Daher wurde für alle Prüfgüter die Bestimmung der Reduktone erbeten und für die Weißwein- und Rosewein-Prüfgüter eine Reaktionszeit von 5 Minuten, für die Rotwein-Prüfgüter von 20 Minuten für die Bindung der Freien Schwefligen Säure empfohlen. Das Gesamtergebnis der Reduktonbestimmungen ist in der Ergänzend wird angemerkt, dass bei dem Prüfgut FT20P01 zu 77 Laborergebnissen die Reaktionszeit zur Bindung der Freien Schwefligen Säure mitgeteilt wurde, aber nur 43 Teilnehmer, mithin 44 % die Empfehlung einer Reaktionszeit von 5 Minuten beachteten. Bei den 37 Laboratorien, die nur im Umfang der amtlichen Qualitätsweinanalytik teilnahmen, wurde die Empfehlung nur bei 13 der 26 mitgeteilten Reaktionszeiten eingehalten. Insgesamt sind damit die Ergebnisse der Bestimmung der Reduktone wie in der Regel in Laborvergleichsuntersuchungen wenig befriedigend. Eine weitergehende Präzisierung und Vereinheitlichung der Methodik der Reduktonbestimmung bleibt erforderlich.

zusammengefasst.

Tabelle 12: Ergebnisse der Bestimmung der Reduktone

	gültige Werte	Mittelwert	Labor-Stdabw. (s_L)	Quotient s _L /s _H	Quotient u _M /s _{Ziel}
FT20P01	82 (3)	11,99	2,75	2,08	0,23
FT20P02	36 (8)	14,90	3,95	2,47	0,41
FT20P03	43 (3)	16,21	3,49	2,07	0,32
FT20P04	34 (10)	12,66	4,01	2,83	0,49
FT20P05	43 (2)	19,84	3,70	1,82	0,28

Zu dem Prüfgut FT20P01 wurden 85, bei den übrigen Prüfgütern um 44 Laborergebnisse vorgelegt. Bei den Rotwein-Prüfgütern lag die Quote der wegen mehr als 50 % Abweichung vom Median bei der Auswertung nicht berücksichtigten Laborergebnisse für das Prüfgut FT20P02 bei 18 % und überschritt bei dem Prüfgut FT20P04 mit 22,7 % zumindest formal den Höchstwert von 22,2 % für die Ermittlung gültiger Z-Scores, während dieser Anteil bei den anderen Prüfgütern unter 10 % lag und damit unauffällig war. Jedoch ergaben sich bei uneingeschränkter bzw. nur geringfügig eingeschränkter Zuverlässigkeit der Bezugswerte für die Prüfgüter FT20P01 bis FT20P04 Werte des Quotienten s_L/s_{Ziel} zwischen 2,1 und 2,8. Es konnten somit keine gültigen Z-Scores ermittelt werden. Lediglich für das Prüfgut FT20P05 wies der Quotient s_L/s_{Ziel} den erhöhten Wert von 1,8 unterhalb des Höchstwertes 2,0 auf. Es ergaben sich somit gültige Z-Scores.

Ergänzend wird angemerkt, dass bei dem Prüfgut FT20P01 zu 77 Laborergebnissen die Reaktionszeit zur Bindung der Freien Schwefligen Säure mitgeteilt wurde, aber nur 43 Teilnehmer, mithin 44 % die Empfehlung einer Reaktionszeit von 5 Minuten beachteten. Bei den 37 Laboratorien, die nur im Umfang der amtlichen Qualitätsweinanalytik teilnahmen, wurde die Empfehlung nur bei 13 der 26 mitgeteilten Reaktionszeiten eingehalten. Insgesamt sind damit die Ergebnisse der Bestimmung der Reduktone wie in der Regel in Laborvergleichsuntersuchungen wenig befriedigend. Eine weitergehende Präzisierung und Vereinheitlichung der Methodik der Reduktonbestimmung bleibt erforderlich.

4.5.2 Freie Schweflige Säure

Stand: 02.03.2021

Die Laborergebnisse für **Freie Schweflige Säure** wurden wegen des Vorhandenseins bestimmbarer Reduktongehalte in Anbetracht der durch die Bestimmungsverfahren geprägten Unterschiede stets in drei Gruppen aufgeteilt. In der ersten wurden durch **Destillations-** oder **photometrische Verfahren** bestimmte Laborergebnisse zusammengefasst. Diese Zusammenfassung erfolgt, da verfahrensbedingt keine Abhängigkeit der Ergebnisse vom Gehalt an Reduktonen im Prüfgut besteht, obwohl Unterschiede der Verfahrensmittelwerte und Streuungen auftreten können. Einen Überblick über alle Prüfgüter vermittelt Tabelle 13 beispielhaft für die Ergebnisse aus Destillations- und photometrischen Verfahren.

Tabelle 13: Ergebnisse der Bestimmung der Freien Schwefligen Säure

	gültige Werte	Mittelwert	Labor-Stdabw. (s _L)	Quotient s∟/s _H	Quotient u _M /s _{Ziel}
FT20P01	24	27,45	2,79	1,05	0,21
FT20P02	22	34,51	5,41	1,62	0,35
FT20P03	21	46,51	3,66	0,88	0,19
FT20P04	23	29,18	4,65	1,65	0,34
FT20P05	22	50,40	5,09	1,14	0,24

^(*) In dieser Spalte steht in Klammern die zusätzliche Anzahl ausgeschlossener Laborergebnisse.

Die zweite Gruppe bildeten die Ergebnisse jodometrischer Bestimmungen ohne Abzug der Reduktone und die dritte Gruppe die Laborergebnisse aus jodometrischen Bestimmungen

^(*) In dieser Spalte steht in Klammern die zusätzliche Anzahl ausgeschlossener Laborergebnisse.

unter Abzug der Reduktone. Für die Bewertung dieser, trotz häufig nur in geringer Anzahl mitgeteilter Laborergebnisse war keine Erweiterung der Bewertungsbasis durch Berechnung zusätzlicher Werte aus ohne Reduktonabzug mitgeteilten Laborergebnissen und zugehörigen Reduktonwerten erforderlich. Die Bewertung erfolgte unter Bezug auf den Median der jeweiligen Datengruppe mit Leistungskriterien, die gemäß den im Abschnitt 2.4.3.7 dargestellten Regeln als Zielstandardabweichung berechnet wurden.

Bei der Mehrzahl der für die Bewertung gebildeten Datengruppen lag der Wert des Quotienten s_L/s_{Ziel} unter dem Richtwert 1,5. Vor allem bei jodometrischen Laborergebnissen mit Abzug der Reduktone ergaben sich mäßig erhöhte Werte des Quotienten, die somit die mangelnde Vergleichbarkeit der Ergebnisse der Reduktonbestimmung widerspiegeln. Für den Parameter Freie Schweflige Säure konnten in fast allen Fällen **gültige Z-Scores** erhalten werden. Nur bei dem Prüfgut **FT20P04** wurde bei den **jodometrischen** Laborergebnissen **mit Reduktonabzug** der Höchstwert 2,0 des Quotienten überschritten, sodass für diese Datengruppe **keine gültigen Z-Scores** ermittelt werden konnten.

4.5.3 Gesamte Schweflige Säure

Wie im Abschnitt 2.4.3.7 ausgeführt, ergibt sich die Bewertung der Laborergebnisse mit herkömmlichen Verfahren für den Parameter Gesamte Schweflige Säure stets aus dem Vergleich mit dem Median der Ergebnisse aus Destillationsverfahren und der Vergleichsstandardabweichung für das Referenzverfahren. Für **alle Prüfgüter** wurden **gültige Z-Scores** erhalten, wobei die Quotienten s_L/s_{Ziel} mit Ausnahme des Prüfgutes FT20P05 mit dem höchsten Gehalt von rund 190 mg/L an Gesamter Schwefliger Säure unter dem Richtwert 1,5 lagen. Auch bei dem Prüfgut FT20P05 war der Quotient s_L/s_{Ziel} nur geringfügig erhöht. Die Gesamtergebnisse sind in der Tabelle 14 zusammengefasst.

Tabelle 14: Ergebnisse von Destillationsverfahren zur Bestimmung der Gesamten Schweflige Säure [mg/L]

	gültige Werte	Mittelwert	Labor-Stdabw. (s_L)	Quotient s _L /s _{exp}	Quotient u _M /s _{Ziel}
FT20P01	48	160,17	6,99	1,30	0,19
FT20P02	33	112,10	6,27	1,17	0,20
FT20P03	32 (1)	83,17	5,18	0,97	0,17
FT20P04	33 (1)	102,5	7,58	1,43	0,25
FT20P05	32 (1)	190,26	8,77	1,64	0,29

^(*) In dieser Spalte steht in Klammern die zusätzliche Anzahl ausgeschlossener Laborergebnisse.

5 Ergebnisse der FTIR-Untersuchungen

5.1 Spezielle Gegebenheiten für die FTIR-Ergebnisse einzelner Parameter

5.1.1 Gesamtalkohol

Stand: 02.03.2021

Der Wert des Standardparameters Gesamtalkohol der amtlichen Qualitätsweinanalyse wird aus den ermittelten Werten für Vorhandenen Alkohol und Vergärbare Zucker berechnet. Da die Be-

stimmung beider Parameter mittels Fourier-Transform-Infrarotspektroskopie (FTIR) durch die Landwirtschaftskammer Rheinland-Pfalz zugelassen ist, kann der Wert für Gesamtalkohol auch aus den mittels FTIR ermittelten Werten für Vorhandenen Alkohol und Vergärbare Zucker berechnet und soll durch die zur Anwendung des FTIR-Verfahrens zugelassenen Laboratorien in dieser Laborvergleichsuntersuchung mitgeteilt werden. Daher wurde die Möglichkeit zur Mitteilung dieses Wertes für das Prüfgut FT20P01 und eine entsprechende Auswahl des Methoden-Codes auf dem Registerblatt 'FTIR-Ergebnisse' der Datei zur Ergebnismitteilung vorgesehen.

5.1.2 Kodierung der Analysenmethode für Gesamtextrakt und Zuckerfreien Extrakt

Auf dem Registerblatt 'FTIR-Ergebnisse' werden seit dessen Einführung im Vergleich zur Erfahrung über die Verbreitung spezifischer Parameterkalibrierungen auffällig viele Ergebnisse für beide Extrakt-Parameter mitgeteilt. Neben der Ermittlung von Messwerten für die Parameter Gesamtextrakt und Zuckerfreier Extrakt mit Hilfe geeigneter Parameterkalibrierungen unmittelbar aus dem Infrarotspektrum (Weg 1) können entsprechende Werte auch aus den Ergebnissen der FTIR-Messungen für Relative Dichte, Alkohol und Vergärbare Zucker (Weg 2) oder aus einer Kombination von herkömmlichen Messwerten und FTIR-Messwerten (Weg 3) berechnet werden. Bei Weg 3 bestehen wiederum verschiedene Kombinationsmöglichkeiten. In der Dropdown-Liste zur Methodenangabe wurden verschiedene Kombinationsmöglichkeiten zur Auswahl gestellt, aber relativ häufig offensichtlich unzutreffend ausgewählt. Teilweise wurde die Auswahl einer Methode unterlassen. Daher wurde von einer Prüfung abgesehen, ob sich bei Anwendung der verschiedenen Ermittlungswege wesentliche Unterschiede der erhaltenen Werte ergeben. Die vorliegenden Daten sind für diese Parameter aber in den jeweiligen Tabellen mit den Angaben zu den Analysenverfahren dokumentiert.

5.1.3 Besondere Auswahl der Zielstandardabweichung für einzelne Parameter

Die Bewertung der FTIR-Laborergebnisse erfolgte – falls verfügbar – mit einer Zielstandardabweichung, die den Matrixeinfluss auf die Streuung der FTIR-Untersuchungsergebnisse berücksichtigt (siehe Abschnitt 2.4.1). Generell bei dem Parameter **Gesamtextrakt** sowie bei dem Prüfgut **FT20P01** für die Parameter **Vergärbare Zucker** und **Fructose** und zusätzlich bei den Prüfgütern **FT20P02** und **FT20P05** für den Parameter **Glucose** erfolgte die Berechnung der Z-Scores und damit die Bewertung der Laborleistung mit der im Betrag größeren Zielstandardabweichung für die Ergebnisse der Untersuchungen mit herkömmlichen Methoden.

Die FTIR-Messergebnisse für die Parameter **Acetat** und **Freie Schweflige Säure** wurden mit derselben Zielstandardabweichung bewertet wie die Laborergebnisse der herkömmlichen Bestimmungsmethoden, da keine die eventuellen Einflüsse der Matrix berücksichtigenden Zielstandardabweichungen bekannt sind.

Die Z-Scores für den Parameter **Gesamte Schweflige Säure** wurden entsprechend einer in der Besprechung des Wissenschaftlichen Arbeitsausschusse am 07.03.2018 aufgrund der Ergebnisse des Methoden prüfenden Ringversuches und der Erfahrungen aus den zurückliegenden Laborvergleichsuntersuchungen ausgesprochenen Empfehlung mit der nach der Regel von Horwitz zu erwartenden Vergleichsstandardabweichung als Leistungskriterium berechnet. Dies

bedeutet geringere Beträge der Z-Scores und damit fachlich gerechtfertigte, geringere Anforderungen als bei früheren Laborvergleichsuntersuchungen.

5.1.4 Vergärbare Zucker

Als Bezugswert diente für den Parameter Vergärbare Zucker wie bei den Untersuchungsergebnissen mit herkömmlichen Methoden der Median der Laborergebnisse der Zuckerbestimmung mit den spezifischen Methoden Enzymatik und Hochleistungsflüssigkeitschromatographie. Zusätzlich wird - nur in dem Gesamtbericht zu den einzelnen Prüfgütern - unter der Parameterbezeichnung Vergärbare Zucker (S) ein Z-Score für die vom Auswerter berechnete Summe aus den FTIR-Laborergebnissen für Glucose und Fructose ausgewiesen. Diese Vorgehensweise ist im Falle der Verwendung des FTIR-Verfahrens zur Bestimmung des Vergärbaren Zuckers für die amtliche Qualitätsweinanalyse durch die Landwirtschaftskammer Rheinland-Pfalz vorgeschrieben. Aus den Ergebnismitteilungen der Teilnehmer ist teilweise ersichtlich, dass der zum Parameter Vergärbare Zucker mitgeteilte Wert auf diese Weise berechnet wurde. Bei der Verwendung eines unmittelbar aus dem Infrarotspektrum durch eine entsprechende Parameterkalibrierung erhaltenen Wertes ist zu berücksichtigten, dass diese Kalibrierungen (Basiskalibrierungen) zumindest überwiegend in der Zeit erstellt wurden, als die Ergebnisse reduktometrischer Zuckerbestimmungen definitionsgemäß und weinrechtlich als "Zucker" galten. Daraus folgt, dass auf dieser Grundlage ermittelte Werte - wie dies teilweise auch in der Praxis geschieht - korrekter als "Vergärbare Zucker (reduktometrisch)", abgekürzt "Verg. Zucker(r)", zu bezeichnen sind. Unter primär analytischen Gesichtspunkten kann, insbesondere bei Rotwein, ein Vergleich mit dem Median der Ergebnisse reduktometrischer Bestimmungen sachgerechter sein. Auf die Übereinstimmung herkömmlicher und FTIR-Ergebnisse hat auch Einfluss, ob im Falle einer Slope-Interzept-Korrektur als Referenzwerte die Ergebnisse spezifischer Zuckerbestimmungsmethoden oder reduktometrischer Verfahren verwendet wurden. Die diesbezüglichen Abfragen in den Ergebnismitteilungen wurden zwar nur unvollständig beantwortet. Dennoch ist erkennbar, dass alle denkbaren Varianten von einer der Basiskalibrierung entsprechenden Verwendung reduktometrisch ermittelter Zuckergehalte über die Verwendung der Ergebnisse spezifischer Zuckerbestimmungen bis zu Mischungen von Ergebnissen reduktometrischer und spezifischer Zuckerbestimmungen zur Slope-Interzept-Korrektur angewendet wurden. Diese unterschiedliche Verfahrensweise ist sicher ebenso wie die Verwendung unterschiedlicher Basiskalibrierungen nicht geeignet zwischen den Laboratorien die bestmögliche Übereinstimmung der FTIR-Bestimmungsergebnisse für den Parameter Vergärbare Zucker zu erreichen.

5.2 Gesamtergebnis der FTIR-Untersuchungen

Bei dieser Laborvergleichsuntersuchung liegt neben der Überprüfung und Sicherung der Qualität der Untersuchungsergebnisse für das Qualitätsweinprüfungsverfahren ein weiterer Schwerpunkt auf der Überprüfung der Qualität der Laborleistung bei Anwendung des Verfahrens der Fourier-Transform-Infrarotspektroskopie im mittleren Infrarot (FTIR). Für den Vergleich der mit dieser Methode erhaltenen Laborergebnisse mit den Ergebnissen anderer, hier als herkömmlich bezeichneter Methoden, wird eine Zielstandardabweichung (sü FTIR) verwendet, die Matrixeffekte

statistisch, d. h. gemäß einer Zufallsverteilung berücksichtigt. Liegt kein ausgeprägter Matrixeffekt vor, charakterisieren die erhaltenen Z-Scores unmittelbar die Leistungsfähigkeit der eigenen Arbeitsumgebung (Gerätezustand, Eignung der Kalibrierung des jeweils betrachteten Parameters, Arbeitsweise bei der Durchführung der Messung). Bei ausgeprägten Matrixeffekten wird diese Aussage, gegebenenfalls nur für einzelne Parameter, beeinträchtigt.

Diese Prüfung kann grundsätzlich verbessert werden, wenn die mit dieser Methode erhaltenen Ergebnisse untereinander verglichen werden und eine einheitliche Kalibrierung verwendet wird, weil dann die Vergleichsstandardabweichung des FTIR-Verfahrens (s_{FTIR}) als Leistungskriterium herangezogen werden kann. Ihr Betrag ist für die Mehrzahl der Parameter deutlich kleiner als der Betrag der zusätzliche Matrixeffekte berücksichtigenden Zielstandardabweichung sü FTIR. Wird keine einheitliche Kalibrierung eingesetzt, so kann die mögliche Vergleichbarkeit von FTIR-Ergebnissen untereinander nicht erreicht werden.

Für jedes Prüfgut werden daher in einer eigenen Tabelle die wesentlichen beschreibenden Daten einer ausschließlich die FTIR-Ergebnisse berücksichtigenden Auswertung zusammengefasst. Diese wurden vereinfacht durch Anwendung des im Abschnitt 2.4 vorgestellten robusten Verfahrens ermittelt. Da wirkliche Ausreißer bei den Ergebnissen der FTIR-Messungen selten, aber eine zu breite homogene Streuung häufiger ist, wird durch die robuste Berechnungsweise ein "Zuschneiden" der Ergebnisse auf die Zielstandardabweichung vermieden. Die Streuung der Laborergebnisse erhöhende Einflüsse wie die Verwendung ungeeigneter Kalibrierungen und Unterlassen von notwendigen Slope-Interzept-Korrekturen werden so im Gesamtergebnis leichter erkennbar, ohne die Ermittlung zutreffender Z-Scores für einzelne Laborergebnisse zu beeinträchtigen, da der Median weiter als Bezugswert gilt. Bei dieser Auswertung wird der Parameter Essigsäure nicht berücksichtigt, weil die Anzahl der Laborergebnisse zu diesem Parameter für eine aussagekräftige Bewertung zu gering ist.

Kriterien für die erreichte Gesamtleistung der Laboratorien respektive der eingesetzten Kalibrierungen ergeben sich aus einem Vergleich der gefundenen robusten Standardabweichungen der Laborergebnisse (s_L) mit der nach Horwitz berechneten, im Allgemeinen von geeigneten analytischen und beherrschten Verfahren erreichten Vergleichsstandardabweichung sowie mit den Vergleichsstandardabweichungen (s_{FTIR}), die bei Ringversuchen zur Prüfung der FTIR-Methode erhalten wurden. Hierzu werden die Quotienten s_L/s_H und s_L/s_{FTIR} verwendet. Sind die Quotienten s_L/s_H bzw. s_L/s_{FTIR} blau (Wert > 1,5) bzw. rot (Wert > 2,0) markiert, wird die Vergleichsstandardabweichung durch die Laborstandardabweichung (s_L) für diese Parameter signifikant bzw. hoch signifikant überschritten.

Geht man davon aus, dass in der überwiegenden Zahl der teilnehmenden Laboratorien geeignete Kalibrierungen verwendet und somit gültige Medianwerte erhalten werden, so kann mit den Medianwerten und den experimentellen Zielstandardabweichungen (s_{FTIR}) jeder Teilnehmer selbst Z-Scores für den Vergleich der FTIR-Ergebnisse untereinander nach der Formel "Z-Score = (Messwert – Medianwert)/ s_{FTIR} " berechnen. Diese werden daher im Abschnitt 6 dieses Berichtes nicht wiedergegeben und sind in den Ergebnismitteilungen für die einzelnen Laboratorien ebenfalls nicht enthalten.

Systematische Abweichungen der eigenen Ergebnisse vom mittleren Ergebnis der FTIR-Untersuchungen geben unter Berücksichtigung der Ergebnisse der herkömmlichen Methoden Hinweise auf die Eignung der eigenen Kalibrierung bzw. ihrer Anpassung an das eigene Laborgerät und sollten, falls unbefriedigend, Anlass zu Verbesserungsmaßnahmen geben.

5.3 Gesamtergebnis der FTIR-Untersuchungen für das Prüfgut FT20P01

Für das Prüfgut FT20P01 zeigt der in Tabelle 15 durchgeführte Vergleich der in dieser Laborvergleichsuntersuchung gefundenen Standardabweichungen der Laborergebnisse (Spalte "Labor-Stdabw. s_L ") mit den nach Horwitz berechneten Standardabweichungen (Spalte "Zielstdabw n. Horwitz s_H ") in der Spalte "Quotient s_L/s_H ", dass bei den Messungen mit den Laborkalibrierungen nur bei 9 von 15 Parametern ein vergleichbarer Wert, d. h. $s_L/s_H < 1.5$, erreicht wurde. Das Ergebnis ist noch ungünstiger bei einem Vergleich der Standardabweichungen der Laborergebnisse (s_L) mit den Vergleichsstandardabweichungen (Spalte "Zielstdabw exp. FTIR, s_{FTIR} "). Wie die Daten in Spalte "Quotient s_L/s_{FTIR} " zeigen, wurde nur bei den Parametern Vorhandener Alkohol, Weinsäure und Gesamte Schweflige Säure der Wert 1,5 eingehalten, während bei den übrigen Parametern der Richtwert bzw. der Höchstwert von 2,0 überschritten wurde. Daraus folgt, dass bei den FTIR-Untersuchungen die Leistungsfähigkeit des Verfahrens bei weitem nicht erreicht wurde. Als Ursache der größeren Streuung kommen unzureichende Slope-Interzept-Korrekturen und vor allem weniger geeignete Parameterkalibrierungen in Betracht. Es kann sich allerdings auch ein schlechterer Pflegezustand des Gerätes auswirken.

Im vorliegenden Fall ist nur das unbefriedigende Gesamtergebnis für den Parameter **Gesamte Milchsäure** nicht beachtlich, weil der Gehalt unter der Anwendungsgrenze des FTIR-Verfahrens liegt und daher keine zuverlässige Bestimmung möglich ist. Aus diesem Grund werden für diesen Parameter weder im Abschnitt 6.17.3 noch in den Laborergebnismitteilungen Z-Scores ausgewiesen.

Seite 40 von 136

Stand: 02.03.2021

Tabelle 15: Deskriptiv-statistische Ergebnisse der FTIR-Untersuchungen für das Schaumweinprüfgut (FT20P01)

Parameter	alle Werte	Mittel- Wert	Median- Wert	Labor- Stdabw.	Zielstdabw n. Horwitz	Zielstdabw exp. FTIR	Quotient s∟/s _H	Quotient s _L /s _{FTIR}	Quotient u _M /s _{FTIR}
				SL	S _H	S _{FTIR}			
Relative Dichte 20 °C/20 °C	81	1,00208	1,002100	0,000243		0,000146		1,67	0,19
Vorhandener Alkohol (g/L)	82	84,539	84,515	1,041	2,452	0,739	0,42	1,41	0,16
Gesamtextrakt (g/L)	35	42,632	42,600	0,685	1,370	0,415	0,50	1,65	0,28
Vergärbare Zucker(r) (g/L)	80	23,806	23,815	0,763	0,836	0,354	0,91	2,16	0,24
Vergärbare Zucker(S) (g/L)	79	24,080	24,020	0,987	0,842	0,354	1,17	2,79	0,31
Glucose (g/L)	79	11,875	11,900	0,687	0,464	0,288	1,48	2,39	0,27
Fructose (g/L)	79	12,169	12,170	0,636	0,473	0,222	1,35	2,86	0,32
Glycerin (g/L)	70	5,152	5,100	0,418	0,226	0,265	1,85	1,58	0,19
pH-Wert	78	3,163	3,160	0,0862		0,0188		4,59	0,52
Gesamtsäure (g/L)	84	5,734	5,750	0,140	0,250	0,0816	0,56	1,72	0,19
Weinsäure (g/L)	84	5,734	5,750	0,140	0,250	0,132	0,56	1,06	0,12
Flüchtige Säure (g/L)	73	0,291	0,290	0,109	0,0198	0,0427	5,50	2,55	0,30
Gesamte Äpfelsäure (g/L)	73	1,836	1,850	0,279	0,0954	0.0975	2,92	2,86	0,33
Gesamte Milchsäure (g/L)	74	0,371	0,325	0,172	0,0218	0,0805	7,91	2,14	0,25
Freie Schweflige Säure (mg/L)	29	31,64	32,00	5,40	3,04	3,04	1,78	1,78	0,33
Gesamte Schweflige Säure (mg/L)	30	158,94	159,25	13,58	11,88	11,88	1,14	1,14	0,21

Anmerkung: Blau markierte Daten sind auffällig und werden diskutiert. Rot markierte Daten weisen auf die Überschreitung von Grenzen hin.

Grau markierte Daten: Der Gehalt liegt bei Berücksichtigung möglicher Matrixeinflüsse unterhalb der Bestimmungsgrenze.

Erläuterungen zur Tabelle 15:

Labor-Stdabw. (s_L) = Robuste Standardabweichung der Werte zwischen den Laboratorien

Zielstdabw. n. Horwitz (s_H) = Zielstandardabweichung berechnet nach Horwitz

Zielstdabw. exp. FTIR (**s**_{FTIR}) = Zielstandardabweichung aus experimentellen Daten (Vergleichsstandardabweichung aus der Methodenvalidierung des FTIR-Verfahrens)

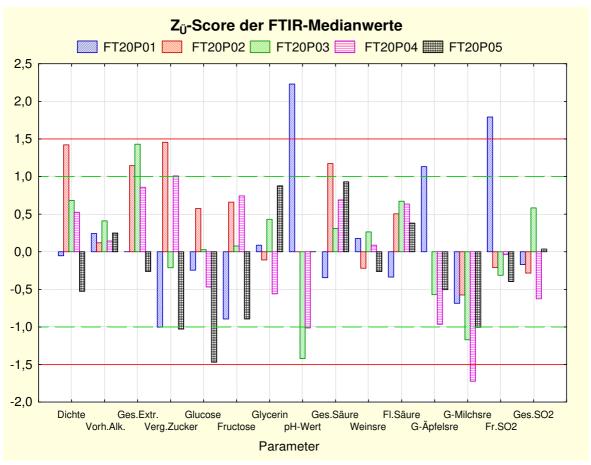
Quotient (s_L/s_H) = Quotient aus der Standardabweichung zwischen den Laboratorien und der Zielstandardabweichung n. Horwitz

Quotient (s_L/s_{FTIR}) = Quotient aus der Standardabweichung zwischen den Laboratorien und der Zielstandardabweichung für die Bewertung der Ergebnisse des FTIR-Verfahrens

Quotient (u_M/s_{FTIR}) = Quotient aus dem Standardfehler des Mittelwertes und der Zielstandardabweichung für die Bewertung der Ergebnisse des FTIR-Verfahrens

Durch die Verwendung der Zielstandardabweichung sü FTIR zur Bewertung der Laborergebnisse werden Effekte der Matrix der Proben nur "statistisch", d. h. gemäß einer Zufallsverteilung berücksichtigt. Bei jeder Probe liegt aber ein konkreter Matrixeffekt vor, der – auch abhängig von der im einzelnen Labor verwendeten Kalibrierung – im Einzelfall zu einem erheblichen systematischen Unterschied der FTIR-Ergebnisse gegenüber den Ergebnissen der herkömmlichen Analytik führen kann. Für die Gesamtheit bzw. den "Durchschnitt" und geprägt von der jeweils am häufigsten eingesetzten Parameterkalibrierung gibt ein Vergleich der Mediane der FTIR-Ergebnisse und der herkömmlichen Ergebnisse einen Hinweis auf einen möglichen besonderen Matrixeffekt bei dem jeweils betrachteten Prüfgut, hier FT20P01.

Hierzu sind in Tabelle 16 die Abweichungen der Mediane der FTIR-Ergebnisse von den Medianen der Ergebnisse herkömmlicher Methoden sowie die Z_{Ü FTIR}-Scores zusammengestellt, die nach Division der Differenz durch die Matrixeffekte berücksichtigende Zielstandardabweichung (s_{Ü FTIR}) erhalten werden. Bei dem Parameter Gesamtextrakt wurde nicht die strengere Übereinstimmungsstandardabweichung des FTIR-Verfahrens sondern wie bei der Bewertung der Laborergebnisse die Vergleichsstandardabweichung des Referenzverfahrens verwendet.


Tabelle 16: Vergleich herkömmlicher und FTIR-Ergebnisse des Prüfgutes FT20P01

	Median FTIR	Median herk.	Differenz	ZielStdAbw	Z _{ü FTIR} -
				Sü _{FTIR}	Score
Relative Dichte 20 °C/20 °C	1,002100	1,00211	-0,000010	0,000190	-0,05
Vorhandener Alkohol [g/L]	84,515	84,3000	0,215	0,886	0,24
Gesamtextrakt [g/L]	42,600	42,600	0,000	0,594	0,00
Vergärbare Zucker ('wie mitgeteilt') [g/L]	23,815	24,400	-0,585	0,584	-1,00
(Summe) [g/L]	24,020	24,400	-0,380	0,584	-0,65
Glucose [g/L]	11,900	12,000	-0,100	0,408	-0,25
Fructose [g/L]	12,170	12,465	-0,295	0,330	-0,89
Glycerin [g/L]	5,100	5,070	0,030	0,348	0,09
pH-Wert	3,160	3,050	0,110	0,0493	2,23
Gesamtsäure [g/L]	5,750	5,800	-0,050	0,145	-0,34
Weinsäure [g/L]	2,160	2,120	0,040	0,227	0,18
Flüchtige Säure [g/L]	0,290	0,320	-0,030	0,0891	-0,34
Gesamte Äpfelsäure [g/L]	1,850	1,603	0,247	0,218	1,13
Gesamte Milchsäure [g/L]	0,325	0,469	-0,143	0,209	-0,69
Freie Schweflige Säure [mg/L]	32,00	27,25	4,75	2,65	1,79
Gesamte Schweflige Säure [mg/L]	159,25	161,30	-2,05	12,05	-0,17

Wie aus der Tabelle 16 ersichtlich, liegen die $Z_{\tilde{U} \; FTIR}$ -Scores der Mediane der FTIR-Ergebnisse in der Regel deutlich unter 1. Derartige Differenzen werden auch zwischen den Ergebnissen verschiedener herkömmlicher Verfahren beobachtet. Sie sind nicht signifikant bzw. für die praktische Nutzung der Untersuchungsergebnisse nicht relevant. Der Wert 1,5 wird nur für die Parameter pH-Wert und Freie Schweflige Säure überschritten. Die $Z_{\tilde{U} \; FTIR}$ -Scores der FTIR-Laborergebnisse sind – ausgenommen die Parameter pH-Wert und Freie Schweflige Säure – aussagekräftig und zur Überprüfung der eigenen Arbeitsbedingungen geeignet. Bei dem Parameter Gesamte Äpfelsäure ist ein geringer und bei den Parametern pH-Wert und Freie Schweflige Säure ein erheblicher Matrixeffekt zu berücksichtigen, der möglicherweise durch eine unzureichende Entfernung der Kohlensäure vor der FTIR-Messung verursacht ist.

5.4 Gegenüberstellung herkömmlicher und FTIR-Ergebnisse für alle Prüfgüter

Einen – an dieser Stelle vorausschauenden – und zugleich zusammenfassenden Überblick über die Eignung der FTIR-Untersuchungsergebnisse zur Überprüfung der eigenen Arbeitsbedingungen gibt auf der Grundlage von Gegenüberstellungen aller herkömmlichen und FTIR-Untersuchungsergebnisse die nachstehende Abbildung analog zur Tabelle 16 für alle Prüfgüter. Sie zeigt für die Gesamtheit der eingesetzten Kalibrierungen die $Z_{\bar{0}\,\text{FTIR}}$ -Scores der Mediane der FTIR-Ergebnisse gegenüber den Medianen der herkömmlichen Ergebnisse und gibt eine Orientierung über das Ausmaß der (mittleren) Matrixeffekte für jeden Parameter bei den in dieser Laborvergleichsuntersuchung eingesetzten Prüfmaterialien. Die kritischen Grenzen für die $Z_{\bar{0}\,\text{FTIR}}$ -Scores sind in der Graphik durch grüne bzw. rote Linien markiert. Liegt der absolute Betrag der dargestellten $Z_{\bar{0}}$ -Scores über 1, ist ein erhöhter Anteil von FTIR-Untersuchungsergebnissen mit unbefriedigendem, über dem Absolutbetrag von 2, d. h. mit über + 2 bzw. unter -2, liegenden Z-Scores zu erwarten. Wenn der $Z_{\bar{0}\,\text{FTIR}}$ -Score des Median über 1,5 liegt, kann der unbefriedigende Z-Score eines einzelnen Laborergebnisses nicht ohne kritische, alle Umstände umfassende Betrachtung als zutreffende Beschreibung der Laborleistung bewertet werden.

Zunächst zeigt eine globale Betrachtung der Graphik, dass bei der Mehrzahl der Parameter systematische Abweichungen ($|z_{\ddot{U}\,FTIR}| > 1,0$) zwischen den herkömmlichen und den FTIR-Ergebnissen auftreten. Dennoch liegen für die Mehrzahl der Parameter/Prüfgut-Kombinationen (56 von 74) vernachlässigbare Matrixeffekte vor. In fünf Fällen liegt der $Z_{\ddot{U}\,FTIR}$ -Score bei 1,0. Keine Hinweise auf wesentliche systematische Unterschiede liegen für alle Prüfgüter bei den Parametern Vorhandener Alkohol, Fructose, Glycerin, Weinsäure, Flüchtige Säure und Gesam-

te Schweflige Säure vor. Bei diesen Parametern und bei allen unauffälligen Parameter/Prüfgut-Kombinationen charakterisieren die $Z_{\ddot{U}}$ -Scores der eigenen Messergebnisse unmittelbar und aussagekräftig die Leistungsfähigkeit der eigenen FTIR-Arbeitsumgebung (Gerätezustand, Eignung der Kalibrierung des jeweils betrachteten Parameters, Arbeitsweise bei der Durchführung der Messung). Daher zeigen erhöhte $Z_{\ddot{U}}$ -Scorebeträge bei diesen Kombinationen eindeutig Schwächen der eigenen Parameterkalibrierung oder des Gerätezustandes an.

Insgesamt liegen 13 Parameter/Prüfgut-Kombinationen vor, bei denen der Betrag des $Z_{\tilde{U} \text{ FTIR}}$ -Scores den Wert eins ($|z_{\tilde{U} \text{ FTIR}}|>1,0$) überschreitet. Eine deutliche Häufung auffälliger $Z_{\tilde{U}}$ -Scores liegt für kein Prüfgut vor. Mit 4 Überschreitungen eines absoluten $Z_{\tilde{U} \text{ FTIR}}$ -Score-Betrages von 1,0 wiesen das aus ausländischem Rotwein bestehende Prüfgut FT20P02, gefolgt von dem Schaumwein-Prüfgut FT20P01 und dem Rosewein-Prüfgut FT20P03 mit je 3 Überschreitungen die höchsten Anzahlen auffälliger $Z_{\tilde{U} \text{ FTIR}}$ -Scores für einzelne Parameter/Prüfgut-Kombinationen aus. Es liegt nahe anzunehmen, dass hierfür bei dem Prüfgut FT20P01 Reste von Kohlendioxid in der Messprobe und bei dem Prüfgut FT20P02 herkunftsbedingte Unterschiede der Matrix und damit des FTIR-Spektrums ursächlich sind. War derartiges Probenmaterial bei der Erarbeitung der Basiskalibrierungen nicht ausreichend vertreten, so werden diese Einflüsse auf das Messergebnis durch das mathematische Schätzverfahren nicht ausgeglichen. Die $Z_{\tilde{U} \text{ FTIR}}$ -Scores der eigenen FTIR-Messergebnisse sind daher unter Berücksichtigung dieser Hinweise zu bewerten.

6 Ergebnisse zu den einzelnen Parametern

6.1 Berechnete Parameter

Stand: 02.03.2021

Bei dem Prüfgut Rotwein (FT20P01) wurden von allen Laboratorien die Angaben zu den berechneten Parametern gefordert. Diese Angaben erfolgten – auch durch die bei der Landwirtschaftskammer Rheinland-Pfalz zugelassenen Laboratorien – nicht vollständig. Von diesen 86 Teilnehmern fehlte die Angabe eines Gesamtalkoholwertes bei 6 Teilnehmen völlig, während weitere 6 Teilnehmer nur einen Wert auf der Grundlage von FTIR-Messwerten mitteilten. Die mitgeteilten Daten wurden nicht rechnerisch nachgeprüft, da erfahrungsgemäß Fehler äußerst selten auftreten. Grundsätzlich erscheint eine eigene Bewertung der berechneten Parameter mittels Z-Score nicht erforderlich, da dieser erfahrungsgemäß durch systematische Abweichungen bei den Ausgangsgrößen geprägt wird. Aus den bereits im Abschnitt 2.4.3.2 näher dargelegten Gründen wurde für die Parameter Gesamtalkohol, Gesamtextrakt und zuckerfreier Extrakt bei dem Prüfgut FT20P01 dennoch eine solche Bewertung durchgeführt.

6.2 Darstellung der analytischen Ergebnisse

Die analytischen Ergebnisse werden je Prüfgut und Parameter in der Regel in vier Tabellen und drei Graphiken dargestellt. Die erste und die zweite Tabelle 'Laborergebnisse' enthalten anonymisiert und getrennt für die Ergebnisse der Untersuchung mit herkömmlichen Methoden sowie für die FTIR-Ergebnisse alle Angaben, die einzelne Laboratorien betreffen. Es werden nur Zeilen aufgenommen, für die Ergebnisse vorliegen.

6.2.1 Aufbau der Tabellen der Laborergebnisse

- Spalte 1: Auswerte-Nummer des Laboratoriums
- Spalte 2: Kennziffer bzw. Kurzbezeichnung der angewandten Analysenmethode
- Spalte 3: Ergebniswert des Laboratoriums
- Spalte 4: Abweichung des Ergebniswertes vom Median
- Spalte 5: Z-Score des Laboratoriums nach Horwitz (falls berechenbar)
- Spalte 6 Z-Score des Laboratoriums nach experimentellen Daten (falls verfügbar)
- Spalte 7: Hinweise, insbesondere Markierung extrem abweichender Daten mittels (*), (**) oder (***)

6.2.2 Aufbau der Tabelle der Deskriptiven Ergebnisse

Titelzeile:	Ergebnisse für	[Bezeichnung des	Analysenparameters];	alle Daten;	ber. Daten
-------------	----------------	------------------	----------------------	-------------	------------

- Zeile 1 Anzahl der Laboratorien, die diesen Parameter bearbeitet haben
- Zeile 2: Minimum: kleinster mitgeteilter, einbezogener Analysenwert
- Zeile 3: Mittelwert aus allen einbezogenen Analysenwerten
- Zeile 4: Median aller einbezogenen Analysenwerte
- Zeile 5: Maximum: größter mitgeteilter, einbezogener Analysenwert
- Zeile 6: Laborstandardabweichung: Standardabweichung aus allen gültigen Ergebniswerten (s_L)
- Zeile 7: Standardfehler des Mittelwertes aus den einbezogenen Analysenwerten (u_M)
- Zeile 8: Zielstandardabweichung: berechnet nach Horwitz (s_H)
- Zeile 9: Zielstandardabweichung: experimentelle Vergleichsstandardabweichung (sexp herk.)
- Zeile 10: Zielstandardabweichung: Matrixeffekte berücksichtigende Standardabweichung (sü FTIR)
- Zeile 11: Horrat-Wert (s_L/s_H): Quotient der Werte in Zeile 6 und Zeile 8
- Zeile 12: Quotient (s_L/s_{exp herk.}): Quotient der Werte in Zeile 6 und Zeile 9
- Zeile 13 Quotient (s_L/s_{Ü FTIR}): Quotient der Werte in Zeile 6 und Zeile 10
- Zeile 14 Quotient (u_M/s_H): Quotient der Werte in Zeile 7 und Zeile 8
- Zeile 15 Quotient (u_M/s_{exp herk.}): Quotient der Werte in Zeile 7 und Zeile 9
- Zeile 16 Quotient (u_M/s_{ü FTIR}): Quotient der Werte in Zeile 7 und Zeile 10

In der Tabelle 'Deskriptive Ergebnisse' werden die beschreibenden statistischen Werte angegeben, die aus allen einbezogenen (Daten, die nicht mehr als 50 % vom Median abweichen), mit herkömmlichen Methoden erhaltenen Laborwerten (Spalte: alle Daten) bzw. den nach Ausschluss stark abweichender Ergebnisse (Z-Score > |5|) verbleibenden Daten (Spalte: ber. Daten) berechnet wurden. Sie beschreiben die Grundlage der Bewertung der Laborleistungen.

6.2.3 Aufbau der Tabelle der Angaben zu den Analyseverfahren

- Spalte 1: Kodierung der Analysemethode in der Tabelle der Laborergebnisse
- Spalte 2: Kurzbeschreibung der Analysenmethode
- Spalte 3: Häufigkeit des Einsatzes der Analysenmethode
- Spalte 4: Robuster Mittelwert der mit der Analysemethode erstellten Laborergebnisse
- Spalte 5: Robuste Standardabweichung der mit der Analysemethode erstellten Laborergebnisse

Schließlich werden in der Tabelle 'Angaben zu den Analyseverfahren' die Kodierungen der Analyseverfahren durch eine Kurzbeschreibung erläutert, die Häufigkeit ihrer Verwendung sowie

der robuste Mittelwert und die robuste Standardabweichung der Laborergebnisse zusammengefasst.

6.2.4 Aufbau der Graphiken

Stand: 02.03.2021

Zur Veranschaulichung und zum optischen Vergleich werden für jeden Parameter die Ergebnisse als Abweichungen vom Median der Ergebnisse mit herkömmlichen Methoden graphisch dargestellt. Die Graphiken geben einen Eindruck über die Verteilung der Analysendaten. Die Darstellung wurde so gewählt, dass die Graphiken möglichst übersichtlich sind. Hierzu wurde die Skala so gewählt, dass die Abweichungsbeträge in der Regel vollständig dargestellt sind. Es wird in begrenztem Maß in Kauf genommen, dass bei erheblichen Abweichungen einzelner Laboratorien geringe Abweichungen vom Median nicht bestmöglich dargestellt werden. Wie in den Ergebnistabellen werden nur Auswertenummern berücksichtigt, zu denen Ergebnisse vorliegen.

Die erste und die zweite Graphik stellen die Abweichungen der Laborergebnisse vom Median der Ergebnisse mit herkömmlichen Methoden in der Reihenfolge der Auswertenummern dar. Wegen der in der Regel unterschiedlichen Zielstandardabweichungen werden die Ergebnisse der herkömmlichen Methoden und der FTIR-Untersuchung meist getrennt dargestellt. Wird nur ein Teil der mit herkömmlichen Methoden erhaltenen Ergebnisse bei der Ermittlung der Bewertungsgrößen berücksichtigt oder erscheint es zur Demonstration methodenbedingter Unterschiede der Laborergebnisse sinnvoll, so werden diese farblich nach Methoden bzw. Methodengruppen differenziert dargestellt. Der "0-Wert" entspricht exakt dem Median. Die Säulendarstellungen können unmittelbar mit den gewohnten analytischen Maßstäben verglichen werden. Die bei Z-Werten von +2 und -2 eingetragenen grünen Linien kennzeichnen das Verlassen des Normalbereiches und die bei Z-Werten von +3 und -3 eingetragenen roten Linien das Verlassen des Bereiches der als richtig bzw. noch richtig zu bewertenden Ergebnisse. So ist auf einen Blick erkennbar, ob ein Laborergebnis außerhalb der Schranken liegt. Der genaue Wert des Z-Scores kann der Laborergebnistabelle entnommen werden. Zur Verbesserung der Übersichtlichkeit wird zur Grundlinie der Graphiken nur jede zweite bzw. dritte Auswertenummer angegeben, wenn mehr als 50 Ergebnisse dargestellt oder die Auswertenummern dreistellig sind.

Bei der dritten Graphik werden die aufsteigend sortierten Abweichungen der Laborergebnisse vom Median der Ergebnisse herkömmlicher Verfahren für alle Verfahren – zumindest nach den Verfahrensgruppen "herkömmlich" und "FTIR" farblich differenziert – dargestellt. Diese Graphiken veranschaulichen die Verteilung der Analysenergebnisse, geben Hinweise auf systematische Unterschiede zwischen den Ergebnissen verschiedener Analysemethoden und ermöglichen den unmittelbaren Vergleich der Abweichungsbeträge zwischen den farblich differenzierten Methoden bzw. Methodengruppen. Wird für alle dargestellten Ergebnisse nur eine Zielstandardabweichung verwendet, so werden die Z-Score-Grenzen eingezeichnet. Da die Bewertungen der Abweichungsbeträge durch die für herkömmliche und FTIR-Untersuchungsergebnisse in der Regel unterschiedlichen Zielstandardabweichungen ungleich und damit die Z-Scores methodenabhängig sind, werden in diesen Fällen in die Graphik keine Z-Score-Grenzen eingezeichnet.

6.3.1 Herkömmliche Laborergebnisse

-	A a arta Nu	\/aufabuan	Manager	A busa labura a	7 Coore	Himmain
	Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score	Hinweis
-					exper.	
	01	LwK 8.1	1,00227	0,000160	1,21	
	03	LwK 8.4	1,00211	0,000000	0,00	
	04	LwK 8.4	1,00207	-0,000040	-0,30	
	05	LwK 8.4	1,00211	0,000000	0,00	
	06 07	LwK 8.4	1,00225	0,000140	1,06	
	08	LwK 8.1 LwK 8.1	1,00195 1,00183	-0,000160 -0,000280	-1,21 -2,12	
	09	LwK 8.1 LwK 8.4	1,00183	-0,000280	-2,12 -0,45	
	10	LwK 8.4	1,00198	-0,000130	-0,43 -0,98	
	11	LwK 8.4	1,00209	-0,000130	-0,36	
	12	LwK 8.4	1,00205	-0,000020	-0,15	
	13	LwK 8.4	1,00203	-0,000080	-0,61	
	14	LwK 8.4	1,00215	0,000040	0,30	
	15	LwK 8.4	1,00200	-0,000110	-0,83	
	16	LwK 8.4	1,00210	-0,000010	-0,08	
	18	LwK 8.4	1,00210	-0,000010	-0,08	
	19	LwK 8.4	1,00200	-0,000110	-0,83	
	20	LwK 8.4	1,00206	-0,000050	-0,38	
	21	LwK 8.4	1,00215	0,000040	0,30	
	22	LwK 8.4	1,00210	-0,000010	-0,08	
	23	LwK 8.4	1,00239	0,000280	2,12	
	24	LwK 8.4	1,00202	-0,000090	-0,68	
	25	LwK 8.4	1,00226	0,000150	1,14	
	26	LwK 8.4	1,00225	0,000140	1,06	
	27	LwK 8.4	1,00210	-0,000010	-0,08	
	28	LwK 8.4	1,00204	-0,000070	-0,53	
	29	LwK 8.1	1,00210	-0,000010	-0,08	
	30	LwK 8.4	1,00203	-0,000080	-0,61	
	31	LwK 8.4	1,00221	0,000098	0,74	
	32 33	LwK 8.1	1,00190	-0,000210	-1,59	
	34	LwK 8.4 LwK 8.4	1,00220 1,00200	0,000090 -0,000110	0,68 -0,83	
	36	LwK 8.4	1,00210	-0,000110	-0,03	
	37	LwK 8.3	1,00143	-0,000680	-0,00 -5,15	(**)
	38	LwK 8.4	1,00143	0,000110	0,83	()
	39	LwK 8.4	1,00212	0,000110	0,08	
	40	LwK 8.4	1,00200	-0,000110	-0,83	
	41	LwK 8.4	1,00210	-0,000010	-0,08	
	42	LwK 8.4	1,00220	0,000090	0,68	
	43	LwK 8.4	1,00213	0,000020	0,15	
	44	LwK 8.4	1,00200	-0,000110	-0,83	
	45	LwK 8.4	1,00250	0,000390	2,95	
	46	LwK 8.4	1,00230	0,000190	1,44	
	47	LwK 8.4	1,00230	0,000190	1,44	
	48	LwK 8.4	1,00211	0,000000	0,00	
	49	LwK 8.4	1,00223	0,000120	0,91	
	50	LwK 8.4	1,00220	0,000090	0,68	
	51	LwK 8.4	1,00219	0,000075	0,57	
	52	LwK 8.4	1,00220	0,000090	0,68	
	55 50	LwK 8.4	1,00201	-0,000100	-0,76	
	56 57	LwK 8.4	1,00200	-0,000110	-0,83	
	57 58	LwK 8.4	1,00210	-0,000010	-0,08 0.23	
	58 59	LwK 8.4 LwK 8.4	1,00214 1,00200	0,000030 -0,000110	0,23 -0,83	
	60	LwK 8.4 LwK 8.4	1,00200	0,000090	-0,63 0,68	
	63	LwK 8.4 LwK 8.4	1,00220	0,000090	0,68	
	64	LwK 8.4 LwK 8.4	1,00260	0,000490	3,71	
	68	LwK 8.4	1,00206	-0,000490	-0,38	
	72	LwK 8.4	0,98564	-0,016469	-124,76	(***)
	73	LwK 8.4	1,00260	0,000490	3,71	` '
	78	LwK 8.4	1,00231	0,000200	1,52	
_			,	• -	•	

Die mit (**) gekennzeichneten Werte wurden bei der wiederholten Berechnung nicht berücksichtigt. (***) Der Teilnehmer hat inzwischen mitgeteilt, dass versehentlich die Relative Dichte des alkoholischen Destillates übermittelt wurde.

Probe FT20P01: Relative Dichte

Fortsetzung: Herkömmliche Laborergebnisse

A N .	Markalana	Maria	Ale d'ale es	7.0	1111
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score	Hinweis
				exper.	
79	LwK 8.2	1,00250	0,000390	2,95	
80	LwK 8.4	1,00220	0,000090	0,68	
81	LwK 8.4	1,00198	-0,000130	-0,98	
82	LwK 8.4	1,00201	-0,000100	-0,76	
86	LwK 8.4	1,00220	0,000090	0,68	
91	LwK 8.4	1,00225	0,000140	1,06	
100	LwK 8.1	1,00203	-0,000080	-0,61	
110	LwK 8.4	1,00210	-0,000010	-0,08	
121	LwK 8.4	1,00210	-0,000010	-0,08	
122	LwK 8.4	1,00212	0,000010	0,08	
123	LwK 8.1	1,00240	0,000290	2,20	
124	LwK 8.4	1,00220	0,000090	0,68	
125	LwK 8.4	1,00210	-0,000010	-0,08	
126	LwK 8.4	1,00220	0,000090	0,68	
127	LwK 8.4	1,00220	0,000090	0,68	
128	LwK 8.1	1,00170	-0,000410	-3,11	
129	LwK 8.4	1,00214	0,000030	0,23	
130	LwK 8.4	1,00205	-0,000060	-0,45	
131	LwK 8.4	1,00218	0,000070	0,53	
132	LwK 8.4	1,00200	-0,000110	-0,83	
133	LwK 8.4	1,00210	-0,000010	-0,08	
134	LwK 8.1	1,00220	0,000090	0,68	
135	LwK 8.1	1,00220	0,000090	0,68	
136	LwK 8.4	1,00230	0,000190	1,44	
137	LwK 8.4	1,00245	0,000340	2,58	
138	LwK 8.4	1,00210	-0,000010	-0,08	
139	LwK 8.4	1,00210	-0,000010	-0,08	/* * \
140	LwK 8.4	1,00030	-0,001810	-13,71	(**)
141	LwK 8.4	1,00210	-0,000010	-0,08	
142 143	LwK 8.4 LwK 8.4	1,00215 1,00210	0,000040 -0,000010	0,30	
				-0,08	
144 145	LwK 8.4 LwK 8.4	1,00212	0,000010 0,000010	0,08 0,08	
146	LwK 8.4 LwK 8.1	1,00212 1,00210	-0,000010	-0,08	
147	LwK 8.1 LwK 8.4	1,00210	-0,000010	-0,08	
148	LwK 8.4 LwK 8.4	1,00210	-0,000010	-0,08	
			,		
149 150	LwK 8.4 LwK 8.4	1,00190 1,00250	-0,000210 0,000390	-1,59 2,95	
152	LwK 8.4 LwK 8.4	1,00250	-0,000390	-0,08	
153	LwK 8.4 LwK 8.4	1,00210	0,000040	0,30	
154	LwK 8.4	1,00215	0,000040	0,30	
155	LwK 8.2	1,00220	0,000290	2,20	
156	LwK 8.4	1,00240	0,000290	1,44	
157	LwK 8.4 LwK 8.4	1,00230	-0,000190	-0,08	
107	LWIN 0.4	1,00210	-0,000010	-0,00	

Der mit (**) gekennzeichnete Wert wurde bei der wiederholten Berechnung nicht berücksichtigt.

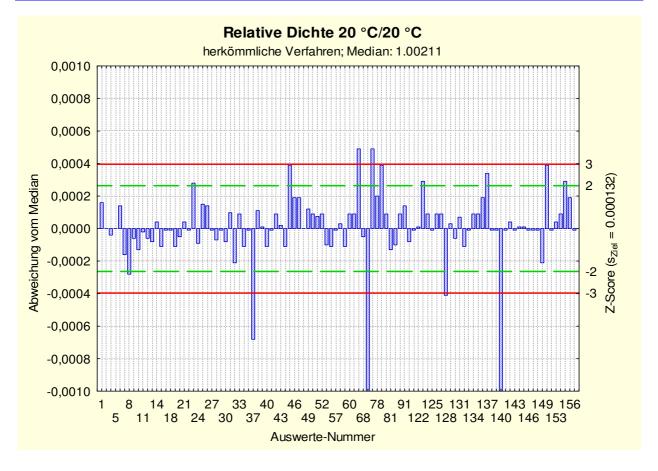
6.3.2 FTIR-Laborergebnisse

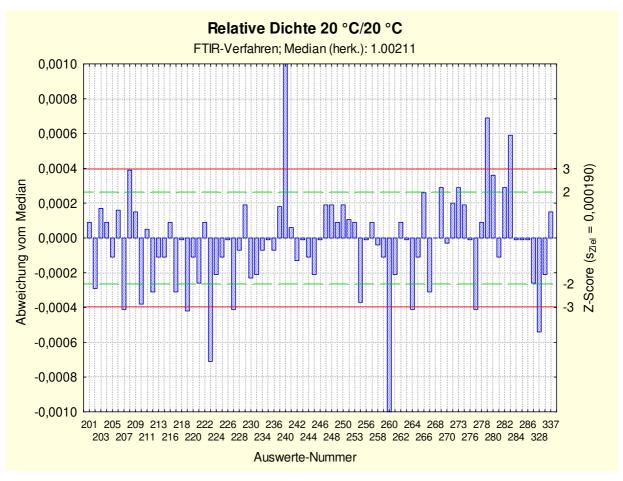
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score exper.	Hinweis
201 202 203 204 205 206 207 208 209 210 211 212 213 215	FTIR FTIR FTIR FTIR FTIR FTIR FTIR FTIR	1,00220 1,00182 1,00228 1,00220 1,00200 1,00227 1,00170 1,00250 1,0026 1,00173 1,00216 1,00180 1,00200	0,000090 -0,000290 0,000170 0,000090 -0,000110 0,000160 -0,000410 0,000390 0,000150 -0,000380 0,00050 -0,000310 -0,000110 -0,000110	exper. 0,47 -1,53 0,89 0,47 -0,58 0,84 -2,16 2,05 0,79 -2,00 0,26 -1,63 -0,58 -0,58	
216 217	FTIR FTIR	1,00220 1,00180	0,000090 -0,000310	0,47 -1,63	

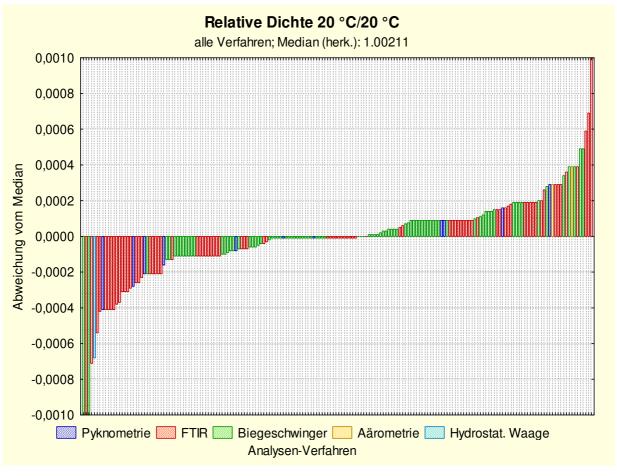
Fortsetzung: FTIR-Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score exper.	Hinweis
218	FTIR	1,00210	-0,000010	-0,05	
219	FTIR	1,00169	-0,000420	-2,21	
220	FTIR	1,00200	-0,000110	-0,58	
221	FTIR	1,00185	-0,000260	-1,37	
222	FTIR	1,00220	0,000090	0,47	
223	FTIR	1,00140	-0,000710	-3,74	
224	FTIR	1,00190	-0,000210	-1,11	
225	FTIR	1,00200	-0,000110	-0,58	
226	FTIR	1,00210	-0,000010	-0,05	
227	FTIR	1,00170	-0,000410	-2,16	
228 229	FTIR FTIR	1,00204	-0,000070	-0,37 1,00	
230	FTIR	1,00230 1,00188	0,000190 -0,000230	-1,21	
232	FTIR	1,00190	-0,000230	-1,11	
234	FTIR	1,00204	-0,000210	-0,37	
235	FTIR	1,00210	-0,000010	-0,05	
236	FTIR	1,00204	-0,000070	-0,37	
237	FTIR	1,00229	0,000180	0,95	
240	FTIR	1,02080	0.018690	98,37	(***)
241	FTIR	1,00217	0,000060	0,32	,
242	FTIR	1,00198	-0,000130	-0,68	
243	FTIR	1,00210	-0,000010	-0,05	
244	FTIR	1,00200	-0,000110	-0,58	
245	FTIR	1,00190	-0,000210	-1,11	
246	FTIR	1,00210	-0,000010	-0,05	
247	FTIR	1,00230	0,000190	1,00	
248	FTIR	1,00230	0,000190	1,00	
249	FTIR	1,00220	0,000090	0,47	
250	FTIR	1,00230	0,000190	1,00	
251	FTIR	1,00222	0,000105	0,55	
253 255	FTIR FTIR	1,00220 1,00174	0,000090 -0,000370	0,47 -1,95	
256	FTIR	1,00174	-0,000370	-0,05	
257	FTIR	1,00210	0,000090	0,47	
258	FTIR	1,00207	-0,000040	-0,21	
259	FTIR	1,00200	-0,000110	-0,58	
260	FTIR	0,99950	-0,002610	-13,74	(***)
261	FTIR	1,00190	-0,000210	-1,11	()
262	FTIR	1,00220	0,000090	0,47	
263	FTIR	1,00210	-0,000010	-0,05	
264	FTIR	1,00170	-0,000410	-2,16	
265	FTIR	1,00200	-0,000110	-0,58	
266	FTIR	1,00237	0,000260	1,37	
267	FTIR	1,00180	-0,000310	-1,63	
268	FTIR	1,00211	0,000000	0,00	
269	FTIR	1,00240	0,000290	1,53	
270	FTIR	1,00208	-0,000030	-0,16	
271	FTIR	1,00231	0,000200	1,05	
273 274	FTIR FTIR	1,00240	0,000290	1,53	
274 275	FTIR	1,00230	0,000190	1,00	
276	FTIR	1,00160 1,00210	-0,000510 -0,000010	-2,68 -0,05	
277	FTIR	1,00210	-0,000410	-2,16	
278	FTIR	1,00220	0,000090	0,47	
279	FTIR	1,00280	0,000690	3,63	
280	FTIR	1,00247	0,000360	1,89	
281	FTIR	1,00200	-0,000110	-0,58	
282	FTIR	1,00240	0,000290	1,53	
283	FTIR	1,00270	0,000590	3,11	
284	FTIR	1,00210	-0,000010	-0,05	
285	FTIR	1,00210	-0,000010	-0,05	
286	FTIR	1,00210	-0,000010	-0,05	
287	FTIR	1,00200	-0,000110	-0,58	
321	FTIR	1,00185	-0,000260	-1,37	
328	FTIR	1,00157	-0,000540	-2,84	
330	FTIR	1,00190	-0,000210	-1,11	
337	FTIR	1,00226	0,000150	0,79	

Fußnote zur vorseitigen Tabelle:


(***) Diese Werte weichen um mehr als 5 Z-Score-Einheiten vom Median der herkömmlichen Werte ab.


6.3.3 Deskriptive Ergebnisse


Ergebnisse für Relative Dichte 20 °C/20 °C	alle Daten	ber. Daten
Gültige Werte	104	100
Minimalwert	0,98564	1,00170
Mittelwert	1,001804	1,002146
Median	1,002105	1,002110
Maximalwert	1,00260	1,00260
Standardabweichung (s _L)	0,002283	0,000149
Standardfehler des Mittelwertes (u _M)	0,000224	0,000015
Zielstandardabweichung n. Horwitz (s _H)		
Zielstandardabweichung, experimentell (sexp herk.)	0,000132	0,000132
Zielstandardabweichung, experimentell (sü FTIR)	0,000190	0,000190
Horrat-Wert (s _L /s _H)		
Quotient (s _L /s _{exp herk.})	17,30	1,13
Quotient (s _L /s _{Ü FTIR})	12,02	0,78
Quotient (u _M /s _H)		
Quotient (u _M /s _{exp herk.})	1,70	0,11
Quotient (u _M /s _{Ü FTIR})	1,18	0,08

6.3.4 Angaben zu den Analyseverfahren

Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
LwK 8.1	Pyknometrische Methode; OIV-MA-AS2-01A, Nr. 2A	11	1,00206	0,000229
LwK 8.2	Bestimmung mit dem Aräometer; OIV-MA-AS2-01B	2	1,00245	0,000080
LwK 8.3	Hydrostatische Waage; OIV-MA-AS2-01A, Nr. 2B	1	1,00143	
LwK 8.4	Bestimmung mit dem Biegeschwinger	90	1,00213	0,000112
	herkömmliche Verfahren	104	1,00213	0,000126
FTIR	Fourier-Transform-Infrarotspektroskopie	81	1,00208	0,000243

6.4 Gesamtalkohol [g/L]

6.4.1 Herkömmliche Laborergebnisse

Auswerte-Nr.	Verfahren (*)	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
01	LwK 1.1 (1)	94,70	-1,300	-0,48	-1,22	
05	LwK 1.1 (1)	95,88	-0,120	-0,04	-0,11	
06	LwK 1.1 (1)	94,79	-1,210	-0,44	-1,14	
08	LwK 1.1 (1)	95,81	-0,190	-0,07	-0,18	
09		96,31	0,310	0,11	0,29	
	LwK 1.1 (1)					
10	LwK 1.1 (2)	94,90	-1,100	-0,40	-1,03	
11	LwK 1.1 (1)	94,46	-1,540	-0,56	-1,45	
12	LwK 1.1 (1)	96,00	0,000	0,00	0,00	
13	LwK 1.1 (1)	95,30	-0,700	-0,26	-0,66	
14	LwK 1.1 (1)	94,80	-1,200	-0,44	-1,13	
15	LwK 1.1 (FTIR)	95,67	-0,330	-0,12	-0,31	
16	LwK 1.1 (1)	96,70	0,700	0,26	0,66	
18	LwK 1.1 (3)	96,50	0,500	0,18	0,47	
19	LwK 1.1 (1)	96,30	0,300	0,11	0,28	
20	LwK 1.1 (2)	97,30	1,300	0,48	1,22	
21	LwK 1.1 (3)	96,50	0,500	0,18	0,47	
22	LwK 1.1 (1)	96,00	0,000	0,00	0,00	
23	LwK 1.1 (1)	95,60	-0,402	-0,15	-0,38	
24	LwK 1.1 (2)	94,60	-1,400	-0,51	-1,32	
25	LwK 1.1 (2)	96,80	0,800	0,29	0,75	
26	LwK 1.1 (1)	95,62	-0,382	-0,14	-0,36	
27	LwK 1.1 (1)	95,70	-0,302	-0,14	-0,38	
29	LwK 1.1 (2)	95,50	-0,500	-0,18	-0,47	
31	LwK 1.1 (1)	98,70	2,700	0,99	2,54	
32	LwK 1.1 (2)	94,33	-1,670	-0,61	-1,57	
33	LwK 1.1 (2)	95,10	-0,900	-0,33	-0,85	
34	LwK 1.1 (FTIR)	96,70	0,700	0,26	0,66	
35	LwK 1.1 (3)	95,40	-0,600	-0,22	-0,56	
37	LwK 1.1 (2)	97,20	1,200	0,44	1,13	
38	LwK 1.1 (1)	96,60	0,600	0,22	0,56	
39	LwK 1.1 (1)	95,70	-0,300	-0,11	-0,28	
40	LwK 1.1 (1)	96,10	0,100	0,04	0,09	
41	LwK 1.1 (1)	96,43	0,430	0,16	0,40	
42	LwK 1.1 (1)	95,80	-0,200	-0,07	-0,19	
43	LwK 1.1 (2)	96,20	0,200	0,07	0,19	
44	LwK 1.1 (1)	96,70	0,700	0,26	0,66	
45	LwK 1.1 (1)	96,30	0,300	0,11	0,28	
46	LwK 1.1 (1)	96,00	0,000	0,00	0,00	
47	LwK 1.1 (1)	95,00	-1,000	-0,37	-0,94	
48	LwK 1.1 (2)	94,63	-1,370	-0,50	-1,29	
49	LwK 1.1 (2)	96,70	0,700	0,26	0,66	
51	LwK 1.1 (1)	96,10	0,100	0,04	0,09	
52	LwK 1.1 (1) LwK 1.1 (1)	97,30	1,300	0,04	1,22	
52 54	LwK 1.1 (1) LwK 1.1 (1)	97,30 95,40	-0,600	-0,46 -0,22	-0,56	
55 56	LwK 1.1 (1)	95,80 05.70	-0,200	-0,07 0.11	-0,19	
56 57	LwK 1.1 (1)	95,70	-0,300	-0,11	-0,28	
57	LwK 1.1 (2)	97,10	1,100	0,40	1,03	
58	LwK 1.1 (1)	96,79	0,790	0,29	0,74	
59	LwK 1.1 (2)	94,70	-1,300	-0,48	-1,22	
60	LwK 1.1 (3)	95,80	-0,200	-0,07	-0,19	
63	LwK 1.1 (2)	95,39	-0,610	-0,22	-0,57	
68	LwK 1.1 (1)	95,96	-0,040	-0,01	-0,04	
78	LwK 1.1 (1)	93,67	-2,330	-0,85	-2,19	
79	LwK 1.1 (2)	97,20	1,200	0,44	1,13	
99	LwK 1.1 (1)	96,70	0,702	0,26	0,66	
121	LwK 1.1 (1)	96,80	0,800	0,29	0,75	
122	LwK 1.1 (1)	96,50	0,500	0,18	0,47	
123	LwK 1.1 (1) LwK 1.1 (2)	96,70	0,700	0,18	0,47	
17.1	∟vvi\ i.i (<i>∠)</i>			0,20		
	Lwk 1 1 /1\	UK ON				
124 125	LwK 1.1 (1) LwK 1.1 (2)	96,80 95,39	0,800 -0,610	0,29 -0,22	0,75 -0,57	

Rote Methodenangabe: als Ergebnisse herkömmlicher Methoden sollen keine FTIR-basierten Werte mitgeteilt werden. (*) Nähere Beschreibung zum Verfahren siehe Abschnitt 6.4.4.

Fortsetzung: Herkömmliche Laborergebnisse

Auswerte-Nr.	Verfahren (*)	Messwert	Abweichung	Z-Score	Z-Score	Hinweis
	()		· ·	Horwitz	exper.	
127	LwK 1.1 (1)	96,50	0,500	0,18	0,47	
128	LwK 1.1 (2)	95,90	-0,100	-0,04	-0,09	
129	LwK 1.1 (1)	95,80	-0,200	-0,07	-0,19	
130	LwK 1.1 (1)	95,80	-0,200	-0,07	-0,19	
131	LwK 1.1 (1)	95,80	-0,200	-0,07	-0,19	
132	LwK 1.1 (2)	95,30	-0,700	-0,26	-0,66	
133	LwK 1.1 (1)	96,80	0,800	0,29	0,75	
134	LwK 1.1 (2)	96,40	0,400	0,15	0,38	
135	LwK 1.1 (2)	96,40	0,400	0,15	0,38	
136	LwK 1.1 (2)	95,30	-0,700	-0,26	-0,66	
137	LwK 1.1 (2)	94,24	-1,760	-0,64	-1,66	
138	LwK 1.1 (2)	96,60	0,600	0,22	0,56	
139	LwK 1.1 (1)	96,00	0,000	0,00	0,00	
140	LwK 1.1 (1)	95,18	-0,818	-0,30	-0,77	
141	LwK 1.1 (1)	95,00	-1,000	-0,37	-0,94	
142	LwK 1.1 (1)	96,71	0,710	0,26	0,67	
143	LwK 1.1 (1)	96,50	0,500	0,18	0,47	
144	LwK 1.1 (2)	94,30	-1,700	-0,62	-1,60	
145	LwK 1.1 (1)	96,60	0,600	0,22	0,56	
146	LwK 1.1 (2)	95,80	-0,200	-0,07	-0,19	
147	LwK 1.1 (1)	96,20	0,200	0,07	0,19	
148	LwK 1.1 (1)	96,00	0,000	0,00	0,00	
149	LwK 1.1 (1)	96,10	0,100	0,04	0,09	
150	LwK 1.1 (2)	96,26	0,260	0,10	0,24	
151	LwK 1.1 (2)	97,08	1,080	0,40	1,02	
152	LwK 1.1 (1)	96,50	0,500	0,18	0,47	
153	LwK 1.1 (1)	96,00	0,000	0,00	0,00	
154	LwK 1.1 (1)	95,95	-0,050	-0,02	-0,05	
155	LwK 1.1 (1)	96,90	0,900	0,33	0,85	
156	LwK 1.1 (1)	95,60	-0,400	-0,15	-0,38	
157	LwK 1.1 (2)	96,00	0,000	0,00	0,00	

6.4.2 FTIR-Laborergebnisse

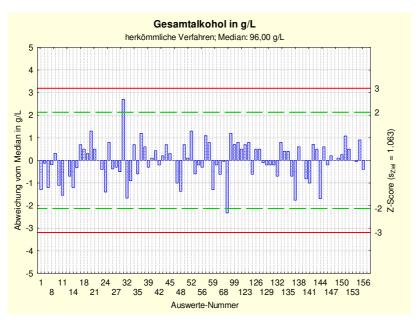
Auswerte-Nr.	Verfahren (*)	Messwert	Abweichung	Z-Score	Z-Score	Hinweis
				Horwitz	exper.	
203	LwK 1.1 (FTIR)	95,87	-0,129	-0,05	-0,12	
205	LwK 1.1 (FTIR)	96,26	0,260	0,10	0,24	
208	LwK 1.1 (3)	97,47	1,470	0,54	1,38	
209	LwK 1.1 (FTIR)	96,31	0,310	0,11	0,29	
210	k. A.	94,90	-1,100	-0,40	-1,03	
211	LwK 1.1 (4)	95,30	-0,700	-0,26	-0,66	
217	LwK 1.1 (3)	95,59	-0,410	-0,15	-0,39	
219	LwK 1.1 (FTIR)	96,38	0,380	0,14	0,36	
221	LwK 1.1 (FTIR)	96,10	0,100	0,04	0,09	
224	LwK 1.1 (FTIR)	94,60	-1,400	-0,51	-1,32	
225	LwK 1.1 (FTIR)	96,60	0,600	0,22	0,56	
226	LwK 1.1 (FTIR)	95,72	-0,280	-0,10	-0,26	
227	LwK 1.1 (FTIR)	97,67	1,673	0,61	1,57	
228	LwK 1.1 (FTIR)	95,95	-0,050	-0,02	-0,05	
237	LwK 1.1 (3)	95,41	-0,590	-0,22	-0,56	
250	LwK 1.1 (FTIR)	94,30	-1,700	-0,62	-1,60	
253	LwK 1.1 (3)	96,95	0,950	0,35	0,89	
257	LwK 1.1 (3)	96,88	0,880	0,32	0,83	
258	LwK 1.1 (FTIR)	97,03	1,030	0,38	0,97	
259	LwK 1.1 (FTIR)	93,80	-2,200	-0,81	-2,07	
266	LwK 1.1 (FTIR)	93,58	-2,420	-0,89	-2,28	
267	LwK 1.1 (FTIR)	96,84	0,840	0,31	0,79	
268	LwK 1.1 (FTIR)	94,88	-1,120	-0,41	-1,05	
275	LwK 1.1 (FTIR)	96,47	0,470	0,17	0,44	
276	LwK 1.1 (FTIR)	94,04	-1,960	-0,72	-1,84	
278	LwK 1.1 (FTIR)	95,40	-0,600	-0,22	-0,56	
279	LwK 1.1 (2)	96,60	0,600	0,22	0,56	
280	LwK 1.1 (FTIR)	95,50	-0,500	-0,18	-0,47	
285	k. A. `	86,29	-9,710	-3,55	-9,13	(**)

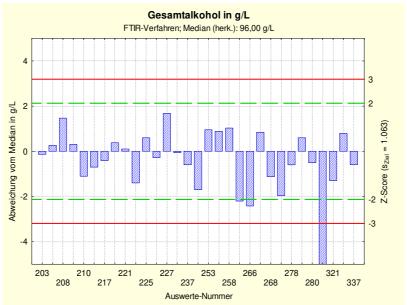
Fortsetzung: FTIR-Laborergebnisse

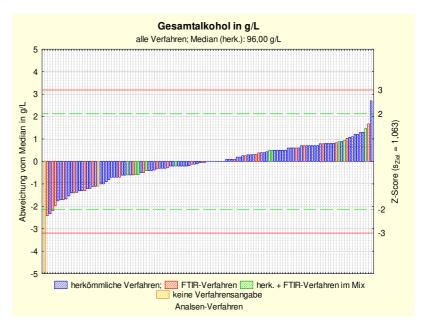
Auswerte-Nr.	Verfahren (*)	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
321	LwK 1.1 (FTIR)	94,70	-1,300	-0,48	-1,22	
328	LwK 1.1 (FTIR)	96,79	0,790	0,29	0,74	
337	LwK 1.1 (3)	95,41	-0,590	-0,22	-0,56	

^(*) Nähere Beschreibung zum Verfahren siehe Abschnitt 6.4.4.

6.4.3 Deskriptive Ergebnisse


Ergebnisse für Gesamten Alkohol in g/L	alle Daten
Gültige Werte	86
Minimalwert	93,67
Mittelwert	95,960
Median	96,000
Maximalwert	98,70
Standardabweichung (s _L)	0,849
Standardfehler des Mittelwertes (u _M)	0,092
Zielstandardabweichung n. Horwitz (s _H)	2,732
Zielstandardabweichung, experimentell (sexp herk.)	1,063
Zielstandardabweichung, experimentell (sü FTIR)	
Horrat-Wert (s _L /s _H)	0,31
Quotient (s _L /s _{exp herk.)}	0,80
Quotient (s _L /s _ü _{FTIR}) *)	
Quotient (u _M /s _H)	0,03
Quotient (u _M /s _{exp herk.)}	0,09
Quotient (u _M /sü _{FTIR}) *)	


^{*)} Die Bewertung der FTIR-Messergebnisse erfolgte mit der Zielstandardabweichung für herkömmliche Werte


6.4.4 Angaben zu den Analyseverfahren

Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
LwK 1.1 (1) (Zucker enz./HPLC)	(Gesamtzucker [Glucose + Fructose, enzymat. oder HPLC] * 0,47)+Vorh. Alkohol [g/L]	58	96,05	0,650
LwK 1.1 (2) (Zucker reduktometrisch)	((Gesamtzucker [reduktometrisch] - 1) * 0,47) + Vorh. Alkohol [g/L]	29	95,84	1,109
	herkömmliche Verfahren	86	95,97	0,836
LwK 1.1 (FTIR) (FTIR-Alkohol +-Zucker)	(Gesamtzucker [FTIR-Glucose + FTIR- Fructose]*0,47)+Vorh. Alkohol [FTIR] [g/L]	23	95,69	1,212
LwK 1.1 (3) (Alkhol + FTIR-Zucker)	Alkohol herkömmlich + (Gesamt- oder Summen- zucker FTIR)*0,47	10	96,19	0,865
LwK 1.1 (4) (FTIR Alkohol+vgZucker)	FTIR-Alkohol + Vergärbare Zucker, herkömmlich	1	95,30	
k. A.	keine Methodenangabe	2	90,59	6,904

^(**)Der gekennzeichnete Wert weicht um mehr als 5 Z-Score-Einheiten vom Median der herkömmlichen Werte ab.

6.5 Vorhandener Alkohol [g/L]

6.5.1 Herkömmliche Laborergebnisse

Bewertungsbasis: Destillationsverfahren

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
01	LwK 2.4	82,95	-1,350	-0,55	-2,52	
03	LwK 2.9	85,86	1,560	0,64	2,92	
04	LwK 2.1	83,82	-0,483	-0,20	-0,90	
05	LwK 2.4	84,51	0,210	0,09	0,39	
06	LwK 2.9	83,74	-0,560	-0,23	-1,05	
07	LwK 2.4	83,18	-1,120	-0,46	-2,09	
80	LwK 2.4	84,68	0,380	0,16	0,71	
09	LwK 2.1	84,83	0,530	0,22	0,99	
10	LwK 2.1	84,40	0,100	0,04	0,19	
11	LwK 2.4	82,95	-1,350	-0,55	-2,52	
12	LwK 2.1	84,50	0,200	0,08	0,37	
13	LwK 2.1	83,90	-0,400	-0,16	-0,75	
14	LwK 2.1	83,40	-0,900	-0,37	-1,68	
15	LwK 2.9	84,53	0,230	0,09	0,43	
16	LwK 2.9	85,00	0,700	0,29	1,31	
18	LwK 2.9	85,70	1,400	0,57	2,62	
19	LwK 2.1	84,94	0,640	0,26	1,20	
20	LwK 2.9	85,30	1,000	0,41	1,87	
21	LwK 2.9	84,80	0,500	0,20	0,93	
22	LwK 2.7	84,53	0,230	0,09	0,43	
23	LwK 2.9	84,60	0,300	0,12	0,56	
24	LwK 2.5	83,70	-0,600	-0,25	-1,12	
25	LwK 2.9	84,90	0,600	0,25	1,12	
26	LwK 2.1	84,30	0,000	0,00	0,00	
27	LwK 2.4	84,60	0,300	0,12	0,56	
28	LwK 2.5	83,80	-0,500	-0,20	-0,93	
29	LwK 2.4	84,50	0,200	0,08	0,37	
30	LwK 2.1	83,84	-0,460	-0,19	-0,86	
31	LwK 2.9	84,55	0,250	0,10	0,47	
32	LwK 2.4	83,14	-1,160	-0,47	-2,17	
33	LwK 2.1	83,80	-0,500	-0,20	-0,93	
35	LwK 2.9	84,10	-0,200	-0,08	-0,37	
37	LwK 2.2	86,00	1,700	0,69	3,18	
38	LwK 2.9	84,80	0,500	0,20	0,93	
39	LwK 2.4	84,40	0,100	0,04	0,19	
40	LwK 2.4	84,60	0,300	0,12	0,56	
41	LwK 2.9	84,63	0,330	0,13	0,62	
42	LwK 2.4	84,10	-0,200	-0,08	-0,37	
43	LwK 2.9	85,00	0,700	0,29	1,31	
44	LwK 2.1	85,40	1,100	0,45	2,06	
45	LwK 2.9	84,60	0,300	0,12	0,56	(4.4.4)
46	LwK 2.9	96,00	11,700	4,78	21,87	(***)
47	LwK 2.4	83,60	-0,700	-0,29	-1,31	
48	LwK 2.4	84,19	-0,110	-0,04	-0,21	
49	LwK 2.9	84,85	0,550	0,22	1,03	
50	LwK 2.9	82,30	-2,000	-0,82	-3,74	
51	LwK 2.9	84,42	0,120	0,05	0,22	
52	LwK 2.9	85,64	1,340	0,55	2,50	
54	LwK 2.1	84,01	-0,290	-0,12	-0,54	
55	LwK 2.9	84,40	0,100	0,04	0,19	
56 57	LwK 2.5	84,50	0,200	0,08	0,37	
57 50	LwK 2.9	85,70	1,400	0,57	2,62	
58 50	LwK 2.9	85,26	0,960	0,39	1,79	
59	LwK 2.1	83,80	-0,500	-0,20	-0,93	
60	LwK 2.9	84,50	0,200	0,08	0,37	
63	LwK 2.5	83,79	-0,510	-0,21	-0,95	
64	LwK 2.9	85,50	1,200	0,49	2,24	
68	LwK 2.5	84,55	0,250	0,10	0,47	
	1 /4/14 · J · J	×5 20	0,900	0,37	1,68	
70 72	LwK 2.3 LwK 2.4	85,20 84,45	0,149	0,06	0,28	

Die Messwerte in roter Schrift wurden in der Einheit %vol mitgeteilt und vom Auswerter umgerechnet. Der mit (***) gekennzeichnete Wert weicht um mehr als 5 Z-Score-Einheiten vom maßgeblichen Median ab.

Fortsetzung: Herkömmliche Laborergebnisse

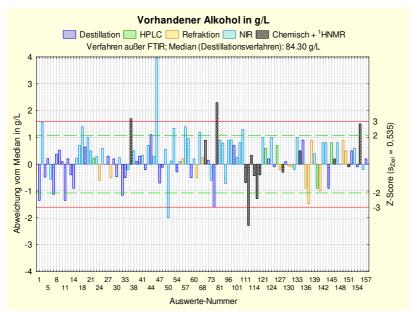
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score	Z-Score	Hinweis
				Horwitz	exper.	
73	LwK 2.9	83,70	-0,600	-0,25	-1,12	
78	LwK 2.1	82,70	-1,600	-0,65	-2,99	
79	LwK 2.2	86,60	2,300	0,94	4,30	
81	LwK 2.9	85,20	0,900	0,37	1,68	
82	LwK 2.9	85,09	0,791	0,32	1,48	
91	LwK 2.9	83,58	-0,720	-0,29	-1,35	
96	LwK 2.9	85,20	0,900	0,37	1,68	
99	LwK 2.9	85,21	0,910	0,37	1,70	
100 101	LwK 2.1 LwK 2.9	85,00 84,55	0,700 0,250	0,29 0,10	1,31 0,47	
103	LwK 2.9	85,10	0,800	0,10	1,50	
109	LwK 2.9	85,60	1,300	0,53	2,43	
110	LwK 2.9	84,60	0,300	0,12	0,56	
111	NMR	83,62	-0,684	-0,28	-1,28	
112	NMR	82,02	-2,283	-0,93	-4,27	
113	NMR	84,64	0,340	0,14	0,64	
114	NMR	83,87	-0,426	-0,17	-0,80	
116	NMR	83,01	-1,288	-0,53	-2,41	
117	NMR	83,90	-0,400	-0,16	-0,75	
121	LwK 2.9	85,30	1,000	0,41	1,87	
122	LwK 2.7	84,90	0,600	0,25	1,12	
123	LwK 2.4	84,50	0,200	0,08	0,37	
124	LwK 2.9	85,30	1,000	0,41	1,87	
125	LwK 2.1	84,20	-0,100	-0,04	-0,19	
126	LwK 2.7	85,00	0,700	0,29	1,31	
127 128	LwK 2.5	84,10	-0,200 -0,300	-0,08 -0,12	-0,37	
129	LwK 2.3 LwK 2.1	84,00 84,40	0,100	0,04	-0,56 0,19	
130	LwK 2.5	84,25	-0,050	-0,02	-0,09	
131	LwK 2.5	84,20	-0,100	-0,02	-0,03	
132	LwK 2.9	84,10	-0,200	-0,08	-0,37	
133	LwK 2.9	85,30	1,000	0,41	1,87	
134	LwK 2.3	84,80	0,500	0,20	0,93	
135	LwK 2.4	85,20	0,900	0,37	1,68	
136	LwK 2.5	83,40	-0,900	-0,37	-1,68	
137	LwK 2.5	82,82	-1,480	-0,60	-2,77	
138	LwK 2.5	85,20	0,900	0,37	1,68	
139	LwK 2.9	84,70	0,400	0,16	0,75	
140	LwK 2.7	83,40	-0,900	-0,37	-1,68	
141	LwK 2.5	83,30	-1,000	-0,41	-1,87	
142	LwK 2.9	85,10	0,800	0,33	1,50	
143	LwK 2.9	85,10	0,800	0,33	1,50	
144 145	LwK 2.1 LwK 2.7	83,40 85,10	-0,900 0,800	-0,37 0,33	-1,68 1,50	
146	LwK 2.7 LwK 2.3	84,50	0,800	0,33	0,37	
147	LwK 2.9	85,10	0,800	0,08	1,50	
148	LwK 2.4	84,30	0,000	0,00	0,00	
149	LwK 2.5	85,20	0,900	0,37	1,68	
150	LwK 2.5	84,80	0,500	0,20	0,93	
151	LwK 2.3	84,20	-0,100	-0,04	-0,19	
152	LwK 2.4	84,80	0,500	0,20	0,93	
153	LwK 2.9	84,90	0,600	0,25	1,12	
154	LwK 2.4	84,20	-0,100	-0,04	-0,19	
155	LwK 2.2	85,80	1,500	0,61	2,80	
156	LwK 2.9	84,10	-0,200	-0,08	-0,37	
157	LwK 2.4	84,50	0,200	0,08	0,37	

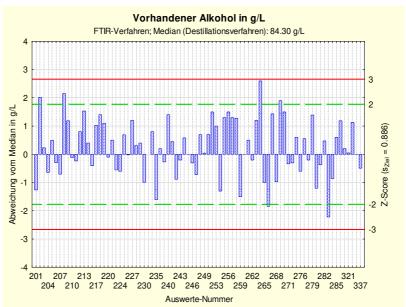
6.5.2 FTIR-Laborergebnisse

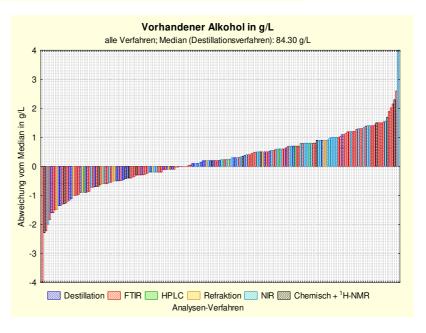
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
201	LwK 2.8	83,04	-1,260	-0,52	-1,42	
202	LwK 2.8	86,32	2,020	0,83	2,28	
203	LwK 2.8	84,53	0,230	0,09	0,26	
204	LwK 2.8	83,66	-0,641	-0,26	-0,72	
205	LwK 2.8	84,79	0,490	0,20	0,55	
206	LwK 2.8	84,01	-0,290	-0,12	-0,33	
207	LwK 2.8	83,60	-0,700	-0,29	-0,79	
208	LwK 2.8	86,45	2,150	0,23	2,43	
209	LwK 2.8	85,49	1,190	0,49	1,34	
210	LwK 2.8	84,19	-0,110	-0,04	-0,12	
211	LwK 2.8	84,06	-0,235	-0,10	-0,27	
212	LwK 2.8	85,10	0,800	0,10	0,90	
213	LwK 2.8	85,83	1,530	0,63	1,73	
215	LwK 2.8	84,70	0,400	0,05	0,45	
216	LwK 2.8	83,90	-0,400	-0,16	-0,45	
217		85,33		0,42		
	LwK 2.8		1,030		1,16	
218	LwK 2.8	85,70	1,400	0,57	1,58	
219	LwK 2.8	85,40	1,100	0,45	1,24	
220	LwK 2.8	84,20	-0,100	-0,04	-0,11	
221	LwK 2.8	84,80	0,500	0,20	0,56	
222	LwK 2.8	83,75	-0,550	-0,22	-0,62	
224	LwK 2.8	83,70	-0,600	-0,25	-0,68	
225	LwK 2.8	84,99	0,690	0,28	0,78	
226	LwK 2.8	84,28	-0,020	-0,01	-0,02	
227	LwK 2.8	85,50	1,200	0,49	1,35	
228	LwK 2.8	84,61	0,310	0,13	0,35	
229	LwK 2.8	84,70	0,400	0,16	0,45	
230	LwK 2.8	83,31	-0,990	-0,40	-1,12	
232	LwK 2.8	76,50	-7,800	-3,19	-8,80	(***)
234	LwK 2.8	85,10	0,800	0,33	0,90	` ,
235	LwK 2.8	82,70	-1,600	-0,65	-1,81	
236	LwK 2.8	84,50	0,200	0,08	0,23	
237	LwK 2.8	84,03	-0,270	-0,11	-0,30	
240	LwK 2.8	85,70	1,400	0,57	1,58	
241	LwK 2.8	84,75	0,450	0,18	0,51	
242	LwK 2.8	83,42	-0,880	-0,36	-0,99	
243	LwK 2.8	84,10	-0,200	-0,08	-0,23	
244	LwK 2.8	84,88	0,580	0,24	0,65	
245	LwK 2.8	84,30	0,000	0,00	0,00	
246	LwK 2.8	84,00	-0,300	-0,12	-0,34	
247	LwK 2.8	83,58		-0,12	-0,34	
248	LwK 2.8	85.00	-0,720 0.700			
	_	,	0,700	0,29	0,79	
249	LwK 2.8	84,34	0,040 0,700	0,02	0,05	
250	LwK 2.8	85,00		0,29	0,79	
251	LwK 2.8	85,80	1,500	0,61	1,69	
253	LwK 2.8	85,30	1,000	0,41	1,13	
254	LwK 2.8	83,00	-1,300	-0,53	-1,47	
255	LwK 2.8	85,60	1,300	0,53	1,47	
256	LwK 2.8	85,80	1,500	0,61	1,69	
257	LwK 2.8	85,60	1,300	0,53	1,47	
258	LwK 2.8	85,58	1,280	0,52	1,44	
259	LwK 2.8	82,80	-1,500	-0,61	-1,69	
260	LwK 2.8	84,30	0,000	0,00	0,00	
261	LwK 2.8	84,80	0,500	0,20	0,56	
262	LwK 2.8	84,10	-0,200	-0,08	-0,23	
263	LwK 2.8	85,50	1,200	0,49	1,35	
264	LwK 2.8	86,90	2,600	1,06	2,93	
265	LwK 2.8	83,30	-1,000	-0,41	-1,13	
266	LwK 2.8	82,46	-1,840	-0,75	-2,08	
267	LwK 2.8	85,73	1,430	0,58	1,61	
268	LwK 2.8	83,33	-0,970	-0,40	-1,09	
269	LwK 2.8	86,20	1,900	0,78	2,14	
	LwK 2.8	85,80	1,500	0,61	1,69	
270	LWIN Z.O	00,00				

Die Messwerte in roter Schrift wurden in der Einheit %vol mitgeteilt und vom Auswerter umgerechnet. Der mit (***) gekennzeichnete Wert weicht um mehr als 5 Z-Score-Einheiten vom maßgeblichen Median ab.

Fortsetzung: FTIR-Laborergebnisse


Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
273	LwK 2.8	84,00	-0,300	-0,12	-0,34	
274	LwK 2.8	84,90	0,600	0,25	0,68	
275	LwK 2.8	85,98	1,677	0,69	1,89	
276	LwK 2.8	83,70	-0,600	-0,25	-0,68	
277	LwK 2.8	84,85	0,550	0,22	0,62	
278	LwK 2.8	84,10	-0,200	-0,08	-0,23	
279	LwK 2.8	85,69	1,390	0,57	1,57	
280	LwK 2.8	83,10	-1,200	-0,49	-1,35	
281	LwK 2.8	83,93	-0,370	-0,15	-0,42	
282	LwK 2.8	84,78	0,475	0,19	0,54	
283	LwK 2.8	82,08	-2,220	-0,91	-2,51	
284	LwK 2.8	83,44	-0,860	-0,35	-0,97	
285	LwK 2.8	84,90	0,600	0,25	0,68	
286	LwK 2.8	85,49	1,190	0,49	1,34	
287	LwK 2.8	84,90	0,600	0,25	0,68	
312	LwK 2.8	84,50	0,200	0,08	0,23	
321	LwK 2.8	84,35	0,050	0,02	0,06	
328	LwK 2.8	85,43	1,130	0,46	1,28	
330	LwK 2.8	84,30	0,000	0,00	0,00	
337	LwK 2.8	83,81	-0,490	-0,20	-0,55	


6.5.3 Deskriptive Ergebnisse


Ergebnisse für Vorhandenen Alkohol in g/L	alle Daten
nur Destillationsverfahren	
Gültige Werte	38
Minimalwert	82,70
Mittelwert	84,158
Median	84,300
Maximalwert	85,40
Standardabweichung (s _L)	0,646
Standardfehler des Mittelwertes (u _M)	0,105
Zielstandardabweichung n. Horwitz (s _H)	2,446
Zielstandardabweichung, experimentell (sexp herk.)	0,535
Zielstandardabweichung, experimentell (sü FTIR)	0,886
Horrat-Wert (s _L /s _H)	0,26
Quotient (s _L /s _{exp herk.})	1,21
Quotient (s _L /s _Ü _{FTIR})	0,73
Quotient (u _M /s _H)	0,04
Quotient (u _M /s _{exp herk.})	0,20
Quotient (u _M /sü _{FTIR})	0,12

6.5.4 Angaben zu den Analyseverfahren

Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
LwK 2.1	Destillation nach Neutralisation;			
	OIV-MA-AS312-01A Nr. 4A oder Nr. 4B	18	84,15	0,615
LwK 2.4	Einfache direkte Destillation n. AVV V2	20	84,19	0,689
	Destillationsverfahren	38	84,18	0,651
LwK 2.2	Chemische Alkoholbestimmung n. Dr. Jakob	3	86,08	0,374
LwK 2.3	Chemische Alkoholbestimmung n. Dr. Rebelein	5	84,53	0,529
LwK 2.5	Berechnung aus relativer Dichte und Refraktion	14	84,12	0,773
LwK 2.7	Hochleistungsflüssigkeitschromatographie	5	84,59	0,780
LwK 2.8	Fourier-Transform-Infrarotspektroskopie	82	84,54	1,041
LwK 2.9	Nah-Infrarotspektrometrie	44	84,90	0,587
NMR	¹ H-Kernresonanzspektroskopie	6	83,51	1,013

6.6 Gesamtextrakt [g/L]

6.6.1 Herkömmliche Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
01	LwK 3.3	40,70	-1,90	-1,39	-3,20	
03	LwK 3.3	43,10	0,50	0,36	0,84	
04	LwK 3.3	42,30	-0,30	-0,22	-0,51	
05	LwK 3.3	42,50	-0,10	-0,07	-0,17	
06	LwK 3.3	42,55	-0,05	-0,04	-0,08	
07	LwK 3.1	40,50	-2,10	-1,53	-3,54	
80	LwK 3.1	41,70	-0,90	-0,66	-1,52	
09	LwK 3.3	42,60	0,00	0,00	0,00	
10	LwK 3.3	42,10	-0,50	-0,36	-0,84	
11	LwK 3.1	41,80	-0,80	-0,58	-1,35	
12	LwK 3.2	42,50	-0,10	-0,07	-0,17	
13	LwK 3.3	42,00	-0,60	-0,44	-1,01	
14	LwK 3.2	42,30	-0,30	-0,22	-0,51	
15	LwK 3.3	42,30	-0,30	-0,22	-0,51	
16	LwK 3.3	42,80	0,20	0,15	0,34	
18	LwK 3.3	42,90	0,30	0,22	0,51	
19	LwK 3.3	42,30	-0,30	-0,22	-0,51	
20	LwK 3.3	42,80	0,20	0,15	0,34	
21	LwK 3.3	42,60	0,00	0,00	0,00	
22	LwK 3.3	42,50	-0,10	-0,07	-0,17	
23	LwK 3.3	43,20	0,60	0,44	1,01	
24	LwK 3.3	41,90	-0,70	-0,51	-1,18	
25	LwK 3.3	43,00	0,40	0,29	0,67	
26	LwK 3.3	42,80	0,20	0,15	0,34	
27	LwK 3.3	42,60	0,00	0,00	0,00	
28	LwK 3.3	42,10	-0,50	-0,36	-0,84	
29	LwK 3.1	42,50	-0,10	-0,07	-0,17	
30	LwK 3.2	42,00	-0,60	-0,44	-1,01	
31	LwK 3.3	43,80	1,20	0,88	2,02	
32	LwK 3.3	41,50	-1,10	-0,80	-1,85	
33	LwK 3.3	42,50	-0,10	-0,07	-0,17	
34	dens/FTIR	42,40	-0,20	-0,15	-0,34	
37	LwK 3.3	41,10	-1,50	-1,09	-2,53	
38	LwK 3.3	42,80	0,20	0,15	0,34	
39	LwK 3.3	42,40	-0,20	-0,15	-0,34	
40	LwK 3.3	42,20	-0,40	-0,29	-0,67	
41	LwK 3.3	42,60	0,00	0,00	0,00	
42	LwK 3.3	42,60	0,00	0,00	0,00	
43	LwK 3.2	42,50	-0,10	-0,07	-0,17	
44	LwK 3.3	42,00	-0,60	-0,44	-1,01	
45	LwK 3.3	43,40	0,80	0,58	1,35	
46	LwK 3.3	42,90	0,30	0,22	0,51	
47	LwK 3.3	42,70	0,10	0,07	0,17	
48	LwK 3.3	42,40	-0,20	-0,15	-0,34	
49	LwK 3.3	42,80	0,20	0,15	0,34	
51	LwK 3.3	42,70	0,10	0,07	0,17	
52 54	LwK 3.3	43,20	0,60	0,44	1,01	
54 55	LwK 3.2	43,30	0,70	0,51	1,18	
55 56	LwK 3.3	42,20	-0,40	-0,29	-0,67	
56 57	LwK 3.3	42,10	-0,50	-0,36	-0,84	
57 50	LwK 3.3 LwK 3.3	43,10	0,50	0,36	0,84	
58 50		42,90	0,30	0,22	0,51	
59	LwK 3.2	41,80	-0,80	-0,58	-1,35 0.51	
60 63	LwK 3.3	42,30 42,40	-0,30 0.20	-0,22 0.15	-0,51	
63 72	FTIR (gemessen)	42,40	-0,20 0.70	-0,15 0.51	-0,34	
73 70	LwK 3.3	43,30	0,70	0,51	1,18	
78 70	LwK 3.2	42,10 44.20	-0,50 1.60	-0,36 1.17	-0,84	
79	LwK 3.3	44,20	1,60	1,17	2,69	
81 82	LwK 3.3	42,60 42.70	0,00	0,00	0,00	
82 91	LwK 3.3 LwK 3.3	42,70 42,60	0,10	0,07	0,17 0,00	
31	LwK 3.3 LwK 3.3	42,60 43,80	0,00 1,20	0,00 0,88	0,00 2,02	

Rote Methodenangabe: als Ergebnisse herkömmlicher Methoden sollen keine FTIR-basierten Werte mitgeteilt werden.

Probe FT20P01: Gesamtextrakt

Fortsetzung: Herkömmliche Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score	Z-Score	Hinweis
				Horwitz	exper.	
110	LwK 3.3	42,50	-0,10	-0,07	-0,17	
121	LwK 3.3	42,70	0,10	0,07	0,17	
122	LwK 3.3	42,30	-0,30	-0,22	-0,51	
123	LwK 3.3	43,10	0,50	0,36	0,84	
124	LwK 3.2	43,00	0,40	0,29	0,67	
125	LwK 3.2	42,30	-0,30	-0,22	-0,51	
126	LwK 3.3	42,90	0,30	0,22	0,51	
127	LwK 3.3	42,50	-0,10	-0,07	-0,17	
128	LwK 3.3	41,10	-1,50	-1,09	-2,53	
129	LwK 3.2	42,50	-0,10	-0,07	-0,17	
130	LwK 3.3	42,30	-0,30	-0,22	-0,51	
131	LwK 3.3	42,60	0,00	0,00	0,00	
132	LwK 3.3	42,10	-0,50	-0,36	-0,84	
133	LwK 3.3	42,70	0,10	0,07	0,17	
134	LwK 3.3	42,70	0,10	0,07	0,17	
135	LwK 3.3	42,90	0,30	0,22	0,51	
136	LwK 3.3	42,60	0,00	0,00	0,00	
137	LwK 3.2	42,70	0,10	0,07	0,17	
138	LwK 3.3	42,80	0,20	0,15	0,34	
139	LwK 3.3	42,50	-0,10	-0,07	-0,17	
140	LwK 3.3	42,10	-0,50	-0,36	-0,84	
141	LwK 3.3	42,10	-0,50	-0,36	-0,84	
142	LwK 3.3	42,90	0,30	0,22	0,51	
143	LwK 3.3	42,70	0,10	0,07	0,17	
144	LwK 3.3	42,20	-0,40	-0,29	-0,67	
145	LwK 3.3	42,70	0,10	0,07	0,17	
146	LwK 3.3	42,40	-0,20	-0,15	-0,34	
147	LwK 3.3	42,70	0,10	0,07	0,17	
148	LwK 3.3	42,40	-0,20	-0,15	-0,34	
149	LwK 3.3	42,20	-0,40	-0,29	-0,67	
150	LwK 3.3	43,50	0,90	0,66	1,52	
151	LwK 3.3	42,90	0,30	0,22	0,51	
152	LwK 3.2	42,60	0,00	0,00	0,00	
153	LwK 3.3	42,60	0,00	0,00	0,00	
154	LwK 3.3	42,60	0,00	0,00	0,00	
155	LwK 3.3	43,60	1,00	0,73	1,68	
156	LwK 3.3	42,80	0,20	0,15	0,34	
157	LwK 3.3	42,20	-0,40	-0,29	-0,67	

6.6.2 FTIR-Laborergebnisse

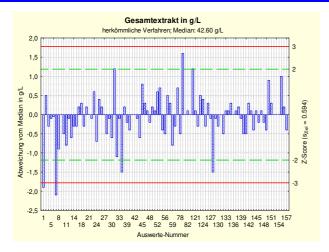
Stand: 02.03.2021

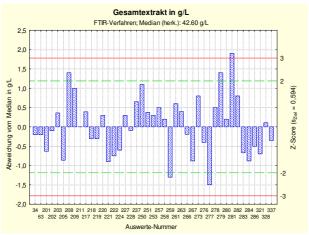
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
201	FTIR (gemessen)	41,97	-0.63	-0,46	-1,06	
202	FTIR (gemessen)	42,50	-0,10	-0,07	-0,17	
203	FTIR (gemessen)	42,96	0,36	0,26	0,61	
205	FTIR (gemessen)	41,74	-0,86	-0,63	-1,45	
208	FTIR (gemessen)	44,00	1,40	1,02	2,36	
209	FTIR-Basis	43,60	1,00	0,73	1,68	
210	k. A.	41,87	-0,73	-0,53	-1,23	
211	FTIR (gemessen)	42,60	0,00	0,00	0,00	
217	FTIR (gemessen)	42,99	0,39	0,28	0,66	
218	FTIR (gemessen)	42,30	-0,30	-0,22	-0,51	
219	FTIR (gemessen)	42,30	-0,30	-0,22	-0,51	
220	FTIR (gemessen)	42,90	0,30	0,22	0,51	
221	FTIR (gemessen)	41,70	-0,90	-0,66	-1,52	
222	FTIR (gemessen)	41,85	-0,75	-0,55	-1,26	
224	FTIR (gemessen)	42,00	-0,60	-0,44	-1,01	
225	LwK 3.3	42,40	-0,20	-0,15	-0,34	
227	FTIR (gemessen)	42,90	0,30	0,22	0,51	
228	FTIR (gemessen)	42,51	-0,09	-0,07	-0,15	
232	k. A. `	38,94	-3,66	-2,67	-6,16	(***)
236	LwK 3.3	42,40	-0,20	-0,15	-0,34	• •
237	FTIR (gemessen)	43,25	0,65	0,47	1,09	

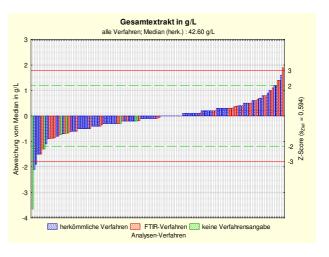
Der mit (***) gekennzeichnete Wert weicht um mehr als 5 Z-Score-Einheiten vom maßgeblichen Median ab.

Fortsetzung: FTIR-Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
250	FTIR (gemessen)	43.70	1,10	0,80	1,85	
251	FTIR (gemessen)	42.98	0,38	0,28	0,64	
253	FTIR (gemessen)	42,90	0,30	0,22	0,51	
257	dens/FTIR	43,10	0,50	0,36	0,84	
258	FTIR-Basis	42,80	0,20	0,15	0,34	
259	FTIR-Basis	41,30	-1,30	-0,95	-2,19	
261	FTIR (gemessen)	43,20	0,60	0,44	1,01	
262	k. A. ``	41,30	-1,30	-0,95	-2,19	
263	FTIR (gemessen)	43,00	0,40	0,29	0,67	
266	FTIR (gemessen)	42,41	-0,19	-0,14	-0,32	
267	FTIR (gemessen)	41,72	-0,88	-0,64	-1,48	
269	k. A.	41,92	-0,68	-0,50	-1,14	
270	k. A.	42,30	-0,30	-0,22	-0,51	
271	k. A.	42,40	-0,20	-0,15	-0,34	
273	FTIR (gemessen)	43,40	0,80	0,58	1,35	
276	FTIR (gemessen)	42,20	-0,40	-0,29	-0,67	
277	FTIR (gemessen)	41,10	-1,50	-1,09	-2,53	
278	FTIR (gemessen)	43,10	0,50	0,36	0,84	
279	FTIR (gemessen)	44,00	1,40	1,02	2,36	
280	FTIR (gemessen)	42,80	0,20	0,15	0,34	
281	FTIR (gemessen)	44,50	1,90	1,39	3,20	
282	FTIR-Basis	43,40	0,80	0,58	1,35	
283	FTIR (gemessen)	41,93	-0,67	-0,49	-1,13	
284	FTIR-Basis	41,72	-0,88	-0,64	-1,48	
285	k. A.	42,40	-0,20	-0,15	-0,34	
286	FTIR (gemessen)	42,10	-0,50	-0,36	-0,84	
287	FTIR (gemessen)	42,40	-0,20	-0,15	-0,34	
321	FTIR (gemessen)	41,90	-0,70	-0,51	-1,18	
328	FTIR (gemessen)	42,71	0,11	0,08	0,19	
337	FTIR (gemessen)	42,25	-0,35	-0,26	-0,59	


6.6.3 Deskriptive Ergebnisse


Ergebnisse für Gesamtextrakt [g/L]	alle Daten
Gültige Werte	97
Minimalwert	40,5
Mittelwert	42,53
Median	42,60
Maximalwert	44,2
Standardabweichung (s _L)	0,578
Standardfehler des Mittelwertes (u _M)	0,059
Zielstandardabweichung n. Horwitz (s _H)	1,370
Zielstandardabweichung, experimentell (sexp herk.)	0,594
Zielstandardabweichung, experimentell (sü FTIR)	(0,565) *)
Horrat-Wert (s _L /s _H)	0,42
Quotient (s _L /s _{exp herk.})	0,97
Quotient (s _L /s _Ü _{FTIR})	(1,02)
Quotient (u _M /s _H)	0,04
Quotient (u _M /s _{exp herk.})	0,10
Quotient (u _M /s _{Ü FTIR})	(0,10)


^{*)} Die Bewertung der FTIR-Ergebnisse erfolgte mit der herkömmlichen Zielstandardabweichung.

6.6.4 Angaben zu den Analyseverfahren

Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
LwK 3.1	Indirekt pyknometrisch n. AVV	4	41,643	0,905
LwK 3.2	Berechnung n. Tabarie auf Basis Alkohol n.LwK 2.1	12	42,454	0,416
LwK 3.3	Berechnung n. Tabarie auf Basis sonst. Alkohol	83	42,586	0,418
	herkömmliche Verfahren	97	42,557	0,445
FTIR (gemessen)	Fourier-Transform-Infrarotspektroskopie (aus Spektrum)	35	42,632	0,685
dens/FTIR	Berechnung nach Tabarie auf der Basis: densitometr. Dichte und FTIR-Alkohol	2	42,750	0,561
FTIR-Basis	Berechnung nach Tabarie auf der Basis:			
	FTIR-Dichte und FTIR-Alkohol	5	42,564	1,153
k. A.	keine Verfahrensangabe	7	41,864	0,671

6.7 Zuckerfreier Extrakt [g/L]

6.7.1 Herkömmliche Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
01	LwK 3.3	15,30	-2,90	-4,36	-2,77	
04	LwK 3.3	17,50	-0,70	-1,05	-0,67	
05	LwK 3.3	18,30	0,10	0,15	0,10	
06	k. A.	19,05	0,85	1,28	0,81	
09	LwK 3.3	18,10	-0,10	-0,15	-0,10	
10	LwK 3.3	19,10	0,90	1,35	0,86	
11	LwK 3.3	17,32	-0,88	-1,32	-0,84	
12	LwK 3.2	18,00	-0,20	-0,30	-0,19	
13	LwK 3.3	17,80	-0,40	-0,60	-0,38	
14	LwK 3.2	18,00	-0,20	-0,30	-0,19	
15	LwK 3.3	18,30	0,10	0,15	0,10	
16	LwK 3.3	17,90	-0,30	-0,45	-0,29	
18	LwK 3.3	20,00	1,80	2,71	1,72	
19	LwK 3.3	18,10	-0,10	-0,15	-0,10	
20	LwK 3.3	17,40	-0,80	-1,20	-0,76	
21	LwK 3.3	17,70	-0,50	-0,75	-0,48	
22	LwK 3.3	18,10	-0,10	-0,15	-0,10	
23	LwK 3.3	19,80	1,60	2,41	1,53	
24	LwK 3.3	18,90	0,70	1,05	0,67	
25	LwK 3.3	17,70	-0,50	-0,75	-0,48	
26	LwK 3.3	18,40	0,20	0,30	0,19	
27 29	LwK 3.3	19,10	0,90	1,35	0,86	
30	LwK 3.1	19,10 17,30	0,90 -0,90	1,35 -1,35	0,86	
30 31	LwK 3.2 LwK 3.3		-0,90 1,30	-1,35 1,95	-0,86 1,24	
32	LwK 3.3	19,50 17,70	-0,50	-0,75	-0,48	
33	LwK 3.3	18,60	0,40	0,60	0,48	
34	dens/FTIR	17,80	-0,40	-0,60	-0,38	
37	LwK 3.3	18,30	0,10	0,15	0,10	
38	LwK 3.3	17,60	-0,60	-0,90	-0,57	
39	LwK 3.3	18,40	0,20	0,30	0,19	
40	LwK 3.3	17,70	-0,50	-0,75	-0,48	
41	LwK 3.3	17,70	-0,70	-1,05	-0,40	
42	LwK 3.3	17,80	-0,40	-0,60	-0,38	
43	LwK 3.3	18,30	0,10	0,15	0,10	
44	LwK 3.3	17,90	-0,30	-0,45	-0,29	
45	LwK 3.3	18,70	0,50	0,75	0,48	
46	LwK 3.3	18,50	0,30	0,45	0,29	
47	LwK 3.3	18,50	0,30	0,45	0,29	
48	LwK 3.3	19,95	1,75	2,63	1,67	
49	LwK 3.3	17,80	-0,40	-0,60	-0,38	
51	LwK 3.3	17,90	-0,30	-0,45	-0,29	
52	LwK 3.3	18,40	0,20	0,30	0,19	
54	LwK 3.2	19,10	0,90	1,35	0,86	
55	LwK 3.3	17,90	-0,30	-0,45	-0,29	
56	LwK 3.3	18,40	0,20	0,30	0,19	
57	LwK 3.3	18,80	0,60	0,90	0,57	
58	LwK 3.3	17,80	-0,40	-0,60	-0,38	
59	LwK 3.2	18,60	0,40	0,60	0,38	
60	LwK 3.3	18,30	0,10	0,15	0,10	
63	FTIR (gemessen)	18,00	-0,20	-0,30	-0,19	
78	LwK 3.2	18,50	0,30	0,45	0,29	
79	LwK 3.3	21,40	3,20	4,81	3,05	
110	LwK 3.3	19,30	1,10	1,65	1,05	
121	LwK 3.3	18,40	0,20	0,30	0,19	
122	LwK 3.3	17,70	-0,50	-0,75	-0,48	
123	LwK 3.3	17,20	-1,00	-1,50	-0,95	
124	LwK 3.2	18,70	0,50	0,75	0,48	
125	LwK 3.2	18,50	0,30	0,45	0,29	
126	LwK 3.3	18,40	0,20	0,30	0,19	
127	LwK 3.3	16,20	-2,00	-3,01	-1,91	
128	LwK 3.2	15,80	-2,40	-3,61	-2,29	
129	LwK 3.2	18,20	0,00	0,00	0,00	

Rote Methodenangabe: als Ergebnisse herkömmlicher Methoden sollen keine FTIR-basierten Werte mitgeteilt werden.

Fortsetzung: Herkömmliche Laborergebnisse

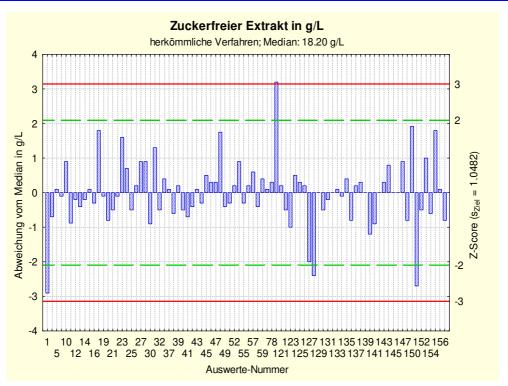
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
130	LwK 3.3	17,70	-0,50	-0,75	-0,48	
131	LwK 3.3	18,00	-0,20	-0,30	-0,19	
132	LwK 3.3	18,20	0,00	0,00	0,00	
133	LwK 3.3	18,30	0,10	0,15	0,10	
134	LwK 3.3	18,10	-0,10	-0,15	-0,10	
135	LwK 3.3	18,60	0,40	0,60	0,38	
136	LwK 3.3	17,40	-0,80	-1,20	-0,76	
137	LwK 3.2	18,40	0,20	0,30	0,19	
138	LwK 3.3	18,50	0,30	0,45	0,29	
139	LwK 3.3	18,20	0,00	0,00	0,00	
140	LwK 3.3	17,00	-1,20	-1,80	-1,14	
141	LwK 3.3	17,30	-0,90	-1,35	-0,86	
142	LwK 3.3	18,20	0,00	0,00	0,00	
143	LwK 3.3	18,50	0,30	0,45	0,29	
144	LwK 3.3	19,00	0,80	1,20	0,76	
145	LwK 3.3	18,20	0,00	0,00	0,00	
146	LwK 3.3	18,20	0,00	0,00	0,00	
147	LwK 3.3	19,10	0,90	1,35	0,86	
148	LwK 3.3	17,40	-0,80	-1,20	-0,76	
149	dens/FTIR	19,00	0,80	1,20	0,76	
150	LwK 3.3	20,12	1,92	2,89	1,83	
151	LwK 3.3	15,50	-2,70	-4,06	-2,58	
152	LwK 3.2	17,70	-0,50	-0,75	-0,48	
153	LwK 3.2	19,20	1,00	1,50	0,95	
154	LwK 3.3	17,60	-0,60	-0,90	-0,57	
155	LwK 3.3	20,00	1,80	2,71	1,72	
156	LwK 3.3	18,30	0,10	0,15	0,10	
157	LwK 3.3	17,40	-0,80	-1,20	-0,76	

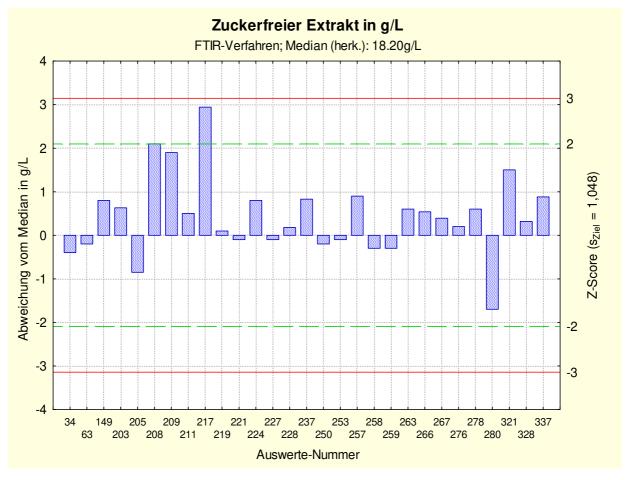
Rote Methodenangabe: als Ergebnisse herkömmlicher Methoden sollen keine FTIR-basierten Werte mitgeteilt werden.

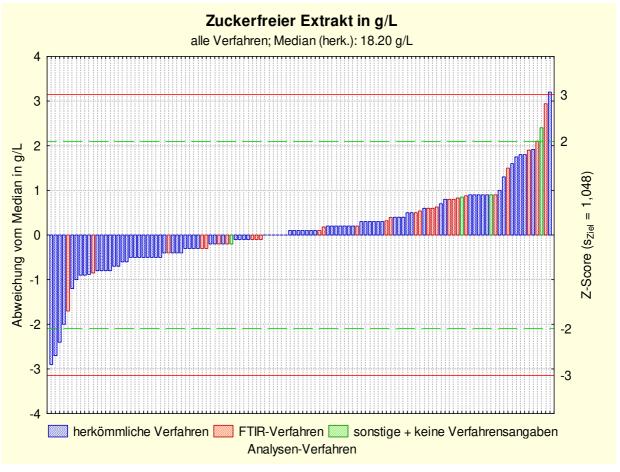
6.7.2 FTIR-Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
203	FTIR Mix Basis	18,83	0,63	0,95	0,60	
205	FTIR (gemessen)	17,35	-0,85	-1,28	-0,81	
208	FTIR (gemessen)	20,30	2,10	3,16	2,00	
209	nur FTIR-Basis	20,10	1,90	2,86	1,81	
210	k. A.	19,10	0,90	1,35	0,86	
211	FTIR (gemessen)	18,70	0,50	0,75	0,48	
217	FTIR Mix Basis	21,14	2,94	4,42	2,80	
219	nur FTIR-Basis	18,30	0,10	0,15	0,10	
221	dens/FTIR	18,10	-0,10	-0,15	-0,10	
224	FTIR (gemessen)	19,00	0,80	1,20	0,76	
225	LwK 3.3	17,70	-0,50	-0,75	-0,48	
227	FTIR Mix Basis	18,10	-0,10	-0,15	-0,10	
228	dens/FTIR	18,38	0,18	0,27	0,17	
237	dens/FTIR	19,03	0,83	1,25	0,79	
250	FTIR (gemessen)	18,00	-0,20	-0,30	-0,19	
253	FTIR (gemessen)	18,10	-0,10	-0,15	-0,10	
257	dens/FTIR	19,10	0,90	1,35	0,86	
258	nur FTIR-Basis	17,90	-0,30	-0,45	-0,29	
259	nur FTIR-Basis	17,90	-0,30	-0,45	-0,29	
263	FTIR (gemessen)	18,80	0,60	0,90	0,57	
266	FTIR Mix Basis	18,74	0,54	0,81	0,52	
267	FTIR Mix Basis	18,59	0,39	0,59	0,37	
276	FTIR Mix Basis	18,40	0,20	0,30	0,19	
278	FTIR Mix Basis	18,80	0,60	0,90	0,57	
279	VgZucker+1	20,60	2,40	3,61	2,29	
280	FTIR Mix Basis	16,50	-1,70	-2,56	-1,62	
285	k. A.	18,00	-0,20	-0,30	-0,19	
321	dens/FTIR	19,70	1,50	2,25	1,43	
328	dens/FTIR	18,52	0,32	0,48	0,31	
337	dens/FTIR	19,08	0,88	1,32	0,84	

Rote Methodenangabe: Die Verwendung der Auswahl "LwK 3.3" ist nicht sachgerecht.


6.7.3 Deskriptive Ergebnisse


Ergebnisse für Zuckerfreier Extrakt [g/L]	alle Daten
Gültige Werte	86
Minimalwert	15,3
Mittelwert	18,19
Median	18,20
Maximalwert	21,4
Standardabweichung (s _L)	0,930
Standardfehler des Mittelwertes (u _M)	0,100
Zielstandardabweichung n. Horwitz (s _H)	0,665
Zielstandardabweichung, experimentell (sexp herk.)	1,048
Zielstandardabweichung, experimentell (sü FTIR)	
Horrat-Wert (s∟/s _H)	1,40
Quotient (s _L /s _{exp herk.)}	0,89
Quotient (s _L /s _Ü _{FTIR}) *)	
Quotient (u _M /s _H)	0,15
Quotient (u _M /s _{exp herk.)}	0,10
Quotient (u _M /sü _{FTIR}) *)	


^{*)} Die Bewertung der FTIR-Ergebnisse erfolgte mit der herkömmlichen Zielstandardabweichung.

6.7.4 Angaben zu den Analyseverfahren

Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
LwK 3.1	Indirekt pyknometrisch n. AVV	1	19,100	
LwK 3.2	Berechnung n. Tabarie auf Basis Alkohol n. LwK 2.1	13	18,271	0,677
LwK 3.3	Berechnung n. Tabarie auf Basis sonst. Alkohol	72	18,149	0,671
	herkömmliche Verfahren	86	18,186	0,692
FTIR (gemessen)	Fourier-Transform-Infrarotspektroskopie	8	18,460	0,823
dens/FTIR	Berechnung. n. Tabarie auf der Basis:			
	densitometr. Dichte; FTIR-Alkohol und FTIR-Zucker)	9	18,760	0,641
FTIR Mix Basis	FTIR gemessener Gesamtextrakt - FTIR-Zucker	8	18,591	0,582
nur FTIR-Basis	Berechnung nach Tabarie auf der Basis:			
	FTIR-Dichte, FTIR-Alkohol und FTIR-Zucker	4	18,499	1,078
	nur FTIR-Verfahren oder Verfahren mit FTIR-	29	18,582	0,727
	Einfluss			
VgZucker+1	unklare Methodenangabe	1	20,600	
k. A.	keine Verfahrensangabe	3	18,740	0,659

6.8 Vergärbare Zucker [g/L]

6.8.1 Herkömmliche Laborergebnisse

Bewertungsbasis sind die Ergebnisse enzymatischer und HPLC-Bestimmungen (verbindliche Bewertung)

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
01	LwK 4.5	25,37	0,970	1,14	1,38	
02	LwK 4.5	23,78	-0,620	-0,73	-0,88	
05	LwK 4.5	24,20	-0,200	-0,23	-0,29	
06	LwK 4.5	23,50	-0,900	-1,05	-1,28	
80	LwK 4.5	23,94	-0,460	-0,54	-0,66	
09	LwK 4.7	24,50	0,100	0,12	0,14	
10	LwK 4.1	24,50	0,100	0,12	0,14	
11	LwK 4.7	24,48	0,080	0,09	0,11	
12	LwK 4.7	24,50	0,100	0,12	0,14	
13	LwK 4.5	24,30	-0,100	-0,12	-0,14	
14	LwK 4.7	24,30	-0,100	-0,12	-0,14	
15	LwK 4.5	23,99	-0,410	-0,48	-0,58	
16	LwK 4.5	24,90	0,500	0,59	0,71	
19	LwK 4.5	24,18	-0,220	-0,26	-0,31	
20	LwK 4.4	25,40	1,000	1,17	1,43	
21	LwK 4.7	24,88	0,480	0,56	0,68	
22	LwK 4.7	24,38	-0,020	-0,02	-0,03	
23	LwK 4.7	23,40	-1,000	-1,17	-1,43	
24	LwK 4.4	23,00	-1,400	-1,64	-2,00	
25	LwK 4.4	25,30	0,900	1,05	1,28	
26	LwK 4.5	24,08	-0,320	-0,37	-0,46	
27	LwK 4.7	23,50	-0,900	-1,05	-1,28	
28	LwK 4.4	23,80	-0,600	-0,70	-0,86	
29	LwK 4.4	23,40	-1,000	-1,17	-1,43	
30	LwK 4.5	24,68	0,280	0,33	0,40	
31	LwK 4.7	24,37	-0,030	-0,04	-0,04	
32	LwK 4.4	23,80	-0,600	-0,70	-0,86	
33	LwK 4.4	23,70	-0,700	-0,82	-1,00	
34	LwK 4.8	24,62	0,220	0,26	0,31	
35	LwK 4.5	24,20	-0,200	-0,23	-0,29	
37	LwK 4.3	23,80	-0,600	-0,70	-0,86 1,07	
38	LwK 4.5	25,15	0,750	0,88	1,07	
39	LwK 4.7	24,00	-0,400	-0,47	-0,57	
40	LwK 4.5	24,50	0,100	0,12	0,14	
41 42	LwK 4.5	25,10	0,700 0,406	0,82 0,48	1,00 0,58	
43	LwK 4.5 LwK 4.4	24,81 24,26	-0,140	-0,46 -0,16	-0,20	
44	LwK 4.4 LwK 4.5	24,20	-0,300	-0,16	-0,20	
45	LwK 4.5 LwK 4.5	24,70	0,300	0,35	0,43	
46	LwK 4.5	24,40	0,000	0,00	0,00	
47	LwK 4.5	24,10	-0,300	-0,35	-0,43	
48	LwK 4.4	22,45	-1,950	-2,29	-2,78	
49	LwK 4.5	24,98	0,580	0,68	0,83	
51	LwK 4.5	25,07	0,670	0,79	0,95	
52	LwK 4.5	24,80	0,400	0,47	0,57	
54	LwK 4.5	24,20	-0,200	-0,23	-0,29	
55	LwK 4.5	24,26	-0,140	-0,16	-0,20	
56	LwK 4.5	24,75	0,350	0,41	0,50	
57	LwK 4.4	24,30	-0,100	-0,12	-0,14	
58	LwK 4.7	25,07	0,670	0,79	0,95	
59	LwK 4.4	23,20	-1,200	-1,41	-1,71	
60	LwK 4.7	24,00	-0,400	-0,47	-0,57	
63	LwK 4.4	24,40	0,000	0,00	0,00	
68	LwK 4.5	24,11	-0,290	-0,34	-0,41	
72	LwK 4.4	29,80	5,400	6,33	7,70	(***)
73	LwK 4.4	24,60	0,200	0,23	0,29	\ /
78	LwK 4.5	23,64	-0,760	-0,89	-1,08	
79	LwK 4.3	23,80	-0,600	-0,70	-0,86	
99	LwK 4.7	24,45	0,051	0,06	0,07	
109	LwK 4.4	24,20	-0,200	-0,23	-0,29	
110	LwK 4.7	23,20	-1,200	-1,41	-1,71	

 $^{(\}ensuremath{^{\star\star\star}}\xspace)$ Dieser Wert weicht um mehr als 5 Z-Score-Einheiten vom maßgeblichen Median ab.

Stand: 02.03.2021 Wiss. Arbeitsausschuss FTIR-Kalibrierung

Fortsetzung: Herkömmliche Laborergebnisse (verbindliche Bewertung)

_		_	•		-,	
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
111	NMR	22,89	-1,506	-1,76	-2,15	
112	NMR	24,74	0,345	0,40	0,49	
113	NMR	23,37	-1,030	-1,21	-1,47	
114	NMR	24,02	-0,382	-1,21 -0,45	-0,54	
115	NMR	24,02 24,45	0,050	0,45	0,07	
116	NMR	24,45 24,71	0,030	0,08	0,07	
121	LwK 4.7		0,000	0,00	0,43	
122	LwK 4.7 LwK 4.7	24,40 24,60	0,000	0,00	0,00	
123	LwK 4.7 LwK 4.4		1,600	1,87	2,28	
		26,00	0,000			
124	LwK 4.5	24,40		0,00	0,00	
125	LwK 4.4	23,80	-0,600	-0,70	-0,86	
126	LwK 4.7	24,50	0,100	0,12	0,14	
127	LwK 4.7	26,30	1,900	2,23	2,71	
128	LwK 4.4	25,30	0,900	1,05	1,28	
129	LwK 4.5	24,29	-0,110	-0,13	-0,16	
130	LwK 4.5	24,58	0,180	0,21	0,26	
131	LwK 4.5	24,64	0,240	0,28	0,34	
132	LwK 4.4	23,90	-0,500	-0,59	-0,71	
133	LwK 4.7	24,40	0,000	0,00	0,00	
134	LwK 4.4	24,60	0,200	0,23	0,29	
135	LwK 4.4	24,30	-0,100	-0,12	-0,14	
136	LwK 4.4	25,20	0,800	0,94	1,14	
137	LwK 4.4	24,30	-0,100	-0,12	-0,14	
138	LwK 4.4	24,30	-0,100	-0,12	-0,14	
139	LwK 4.5	24,40	0,000	0,00	0,00	
140	LwK 4.7	25,10	0,700	0,82	1,00	
141	LwK 4.5	24,80	0,400	0,47	0,57	
142	LwK 4.5	24,70	0,300	0,35	0,43	
143	LwK 4.5	24,15	-0,250	-0,29	-0,36	
144	LwK 4.4	23,30	-1,100	-1,29	-1,57	
145	LwK 4.7	24,48	0,080	0,09	0,11	
146	LwK 4.4	24,20	-0,200	-0,23	-0,29	
147	LwK 4.7	23,60	-0,800	-0,94	-1,14	
148	LwK 4.5	24,96	0,560	0,66	0,80	
149	LwK 4.5	23,20	-1,200	-1,41	-1,71	
150	LwK 4.4	24,39	-0,010	-0,01	-0,01	
151	LwK 4.4	27,40	3,000	3,52	4,28	
152	LwK 4.5	23,60	-0,800	-0,94	-1,14	
153	LwK 4.5	23,50	-0,900	-1,05	-1,28	
154	LwK 4.5	25,00	0,600	0,70	0,86	
155	LwK 4.3	23,60	-0,800	-0,94	-1,14	
156	LwK 4.7	24,52	0,120	0,14	0,17	
157	LwK 4.4	24,80	0,400	0,47	0,57	

6.8.2 FTIR-Laborergebnisse für Vergärbare Zucker

Bewertungsbasis sind die Ergebnisse enzymatischer und HPLC-Bestimmungen (verbindliche Bewertung)

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score	Z-Score	Hinweis
				Horwitz	exper.	
201	LwK 4.8	24,82	0,420	0,49	0,60	
202	LwK 4.8	23,63	-0,770	-0,90	-1,10	
203	LwK 4.8	24,13	-0,270	-0,32	-0,38	
204	LwK 4.8	24,59	0,190	0,22	0,27	
205	LwK 4.8	24,39	-0,010	-0,01	-0,01	
206	LwK 4.8	24,52	0,120	0,14	0,17	
207	LwK 4.8	24,60	0,200	0,23	0,29	
208	LwK 4.8	23,69	-0,710	-0,83	-1,01	
209	LwK 4.8	23,50	-0,900	-1,05	-1,28	
210	LwK 4.8	22,80	-1,600	-1,87	-2,28	
211	LwK 4.8	23,90	-0,500	-0,59	-0,71	
212	LwK 4.8	23,35	-1,050	-1,23	-1,50	
213	LwK 4.8	23,52	-0,880	-1,03	-1,25	
215	LwK 4.8	23,40	-1,000	-1,17	-1,43	
216	LwK 4.8	22,95	-1,450	-1,70	-2,07	

Fortsetzung: FTIR-Laborergebnisse für Vergärbare Zucker (verbindliche Bewertung)

217 218 219				Horwitz	exper.	
218	LwK 4.8	21,84	-2,560	-3,00	-3,65	
	LwK 4.8	22,91	-1,490	-1,̈75	-2,12	
213	LwK 4.8	23,37	-1,030	-1,21	-1,47	
220	LwK 4.8	25,60	1,200	1,41	1,71	
221	LwK 4.8	23,83	-0,570	-0,67	-0,81	
223	LwK 4.8	23,20	-1,200	-1,41	-1,71	
224	LwK 4.8	23,00	-1,400	-1,64	-2,00	
225	LwK 4.8	24,75	0,350	0,41	0,50	
226	LwK 4.8	24,35	-0,050	-0,06	-0,07	
227	LwK 4.8	24,50	0,100	0,12	0,14	
228	LwK 4.8	24,12	-0,280	-0,33	-0,40	
229	LwK 4.8	24,21	-0,190	-0,22	-0,27	
230	LwK 4.8	22,92	-1,480	-1,73	-2,11	
232	LwK 4.8	21,93	-2,470	-2,89	-3,52	
234	LwK 4.8	24,62	0,220	0,26	0,31	
235	LwK 4.8	22,30	-2,100	-2,46	-2,99	
236	LwK 4.8	23,60	-0,800	-0,94	-1,14	
237	LwK 4.8	24,22	-0,180	-0,21	-0,26	
240	LwK 4.8	23,36	-1,040	-1,22	-1,48	
241	LwK 4.8	23,94	-0,460	-0,54	-0,66	
242	LwK 4.8	23,84	-0,560	-0,54	-0,80	
243	LwK 4.8	23,84	-0,600	-0,70	-0,86	
244	LwK 4.8	23,24	-1,160	-1,36	-1,65	
245	LwK 4.8	23,24	-1,220	-1,43	-1,74	
246	LwK 4.8	24,40	0,000	0,00	0,00	
247	LwK 4.8	23,96	-0,440	-0,52	-0,63	
248	LwK 4.8	23,96	-0,440 -2,000	-0,32 -2,34	-0,63 -2,85	
249	LwK 4.8	23,87	-2,000 -0,530	-2,3 4 -0,62	-2,65 -0,76	
250	LwK 4.8	23,60	-0,800	-0,94	-1,14	
251 253	LwK 4.8	24,36	-0,040	-0,05	-0,06 0,57	
	LwK 4.8	24,80	0,400	0,47		
254	LwK 4.8	23,70	-0,700	-0,82	-1,00	
255	LwK 4.8	24,00	-0,400	-0,47	-0,57	
256	LwK 4.8	24,05	-0,350	-0,41	-0,50	
257	LwK 4.8	24,00	-0,400	-0,47	-0,57	
258	LwK 4.8	24,90	0,500	0,59	0,71	
259	LwK 4.8	23,40	-1,000	-1,17	-1,43	
260	LwK 4.8	23,90	-0,500	-0,59	-0,71	
261	LwK 4.8	21,93	-2,470	-2,89	-3,52	
262	LwK 4.8	23,80	-0,600	-0,70	-0,86	
263	LwK 4.8	24,90	0,500	0,59	0,71	
264	LwK 4.8	24,86	0,460	0,54	0,66	
265	LwK 4.8	23,31	-1,090	-1,28	-1,55	
266	LwK 4.8	23,66	-0,740	-0,87	-1,05	
267	LwK 4.8	23,13	-1,270	-1,49	-1,81	
268	LwK 4.8	24,09	-0,310	-0,36	-0,44	
269	LwK 4.8	22,23	-2,170	-2,54	-3,09	
270	LwK 4.8	24,30	-0,100	-0,12	-0,14	
271	LwK 4.8	23,72	-0,680	-0,80	-0,97	
273	LwK 4.8	24,36	-0,040	-0,05	-0,06	
274	LwK 4.8	24,03	-0,370	-0,43	-0,53	
275	LwK 4.8	23,60	-0,800	-0,94	-1,14	
276	LwK 4.8	23,80	-0,600	-0,70	-0,86	
277	LwK 4.8	22,35	-2,050	-2,40	-2,92	
278	LwK 4.8	24,30	-0,100	-0,12	-0,14	
279	LwK 4.8	24,40	0,000	0,00	0,00	
280	LwK 4.8	26,35	1,950	2,29	2,78	
281	LwK 4.8	27,07	2,670	3,13	3,81	
283	LwK 4.8	22,81	-1,590	-1,86	-2,27	
284	LwK 4.8	22,60	-1,800	-2,11	-2,57	
285	LwK 4.8	23,40	-1,000	-1, ¹ 7	-1,43	
286	LwK 4.8	23,64	-0,760	-0,89	-1,08	
287	LwK 4.8	23,90	-0,500	-0,59	-0,71	
321	LwK 4.8	22,98	-1,420	-1,66	-2,02	
328	LwK 4.8	24,18	-0,220	-0,26	-0,31	
	LwK 4.8	23,80	-0,600	-0,70	-0,86	
330			-1,180	-1,38	-1,68	

6.8.3 FTIR-Laborergebnisse für Vergärbare Zucker(S)

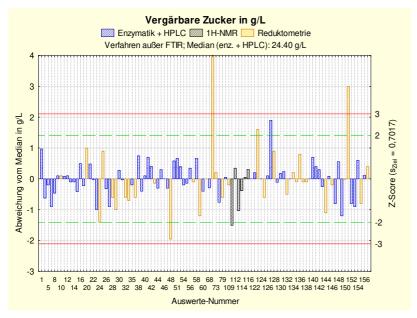
Bewertungsbasis sind die Ergebnisse enzymatischer und HPLC-Bestimmungen (informative Bewertung)

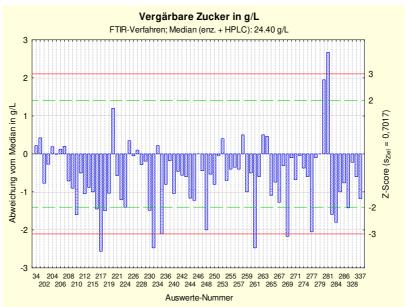
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
201	LwK 4.8	24,82	0,420	0,49	0,60	
202	LwK 4.8	23,63	-0,770	-0,90	-1,10	
203	LwK 4.8	24,13	-0,270	-0,32	-0,38	
204	LwK 4.8	24,59	0,190	0,22	0,27	
205	LwK 4.8	24,40	0,000	0,00	0,00	
207	LwK 4.8	24,60	0,200	0,23	0,29	
208	LwK 4.8	23,69	-0,710	-0,83	-1,01	
209 210	LwK 4.8	23,50 22,80	-0,900 -1,600	-1,05 -1,87	-1,28 -2,28	
211	LwK 4.8 LwK 4.8	23,90	-0,500	-1,67 -0,59	-2,20 -0,71	
212	LwK 4.8	24,58	0,180	0,21	0,26	
213	LwK 4.8	24,05	-0,350	-0,41	-0,50	
215	LwK 4.8	23,80	-0,600	-0,70	-0,86	
216	LwK 4.8	22,95	-1,450	-1,70	-2,07	
217	LwK 4.8	21,41	-2,990	-3,50	-4,26	
218	LwK 4.8	22,44	-1,960	-2,30	-2,79	
219	LwK 4.8	23,37	-1,030	-1,21	-1,47	
220	LwK 4.8	25,70	1,300	1,52	1,85	
221	LwK 4.8	23,83	-0,570	-0,67	-0,81	
222	LwK 4.8	25,11	0,710	0,83	1,01	
223	LwK 4.8	23,20	-1,200	-1,41	-1,71	
224	LwK 4.8	23,00	-1,400	-1,64	-2,00	
225	LwK 4.8	24,64	0,240	0,28	0,34	
226	LwK 4.8	24,35	-0,050	-0,06	-0,07	
227	LwK 4.8	25,90	1,500	1,76	2,14	
228	LwK 4.8	24,13	-0,270	-0,32	-0,38	
229	LwK 4.8	23,11	-1,290	-1,51	-1,84	
230	LwK 4.8	24,02	-0,380	-0,45	-0,54	
232	LwK 4.8	21,93	-2,470	-2,89	-3,52	
234	LwK 4.8	24,14	-0,260	-0,30	-0,37	(++)
235	LwK 4.8	20,60	-3,800	-4,45	-5,42	(**)
236	LwK 4.8	23,50	-0,900	-1,05	-1,28	
237 240	LwK 4.8	24,46 23,36	0,060	0,07 -1,22	0,09 -1,48	
240 241	LwK 4.8 LwK 4.8	23,36	-1,040 -0,070	-1,22 -0,08	-1, 4 6 -0,10	
242	LwK 4.8	23,84	-0,560	-0,66	-0,10	
243	LwK 4.8	24,30	-0,100	-0,12	-0,14	
244	LwK 4.8	25,61	1,210	1,42	1,72	
245	LwK 4.8	22,73	-1,670	-1,96	-2,38	
246	LwK 4.8	24,40	0,000	0,00	0,00	
248	LwK 4.8	24,90	0,500	0,59	0,71	
249	LwK 4.8	25,35	0,950	1,11	1,35	
250	LwK 4.8	23,60	-0,800	-0,94	-1,14	
251	LwK 4.8	24,48	0,080	0,09	0,11	
253	LwK 4.8	23,90	-0,500	-0,59	-0,71	
255	LwK 4.8	25,20	0,800	0,94	1,14	
256	LwK 4.8	24,68	0,280	0,33	0,40	
257	LwK 4.8	24,00	-0,400	-0,47	-0,57	
258	LwK 4.8	27,30	2,900	3,40	4,13	
259	LwK 4.8	23,80	-0,600	-0,70	-0,86	
260	LwK 4.8	25,10	0,700	0,82	1,00	
261	LwK 4.8	22,73	-1,670	-1,96	-2,38	
262 263	LwK 4.8	23,80	-0,600 0.500	-0,70 0.59	-0,86 0.71	
263	LwK 4.8	24,90	0,500	0,59 0.54	0,71	
264 265	LwK 4.8	24,86 23.53	0,460 -0.870	0,54	0,66 -1.24	
265 266	LwK 4.8 LwK 4.8	23,53	-0,870 -0,740	-1,02 -0,87	-1,24 -1,05	
266 267	LwK 4.8 LwK 4.8	23,66 23,64	-0,740 -0,760	-0,87 -0,89	-1,05 -1,08	
267 269	LwK 4.8	23,64	-0,760 -0,460	-0,69 -0,54	-1,08	
209 270	LwK 4.8	23,59	-0,460 -0,810	-0,54 -0,95	-0,66 -1,15	
270 271	LwK 4.8	25,39 25,32	0,920	1,08	1,31	
273	LwK 4.8	24,59	0,190	0,22	0,27	
	_ **: \ F.U		0,100	٠,٧٤	0,41	

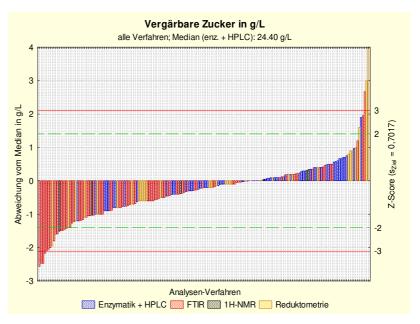
Der mit (***) gekennzeichnete Wert weicht um mehr als 5 Z-Score-Einheiten vom maßgeblichen Median ab.

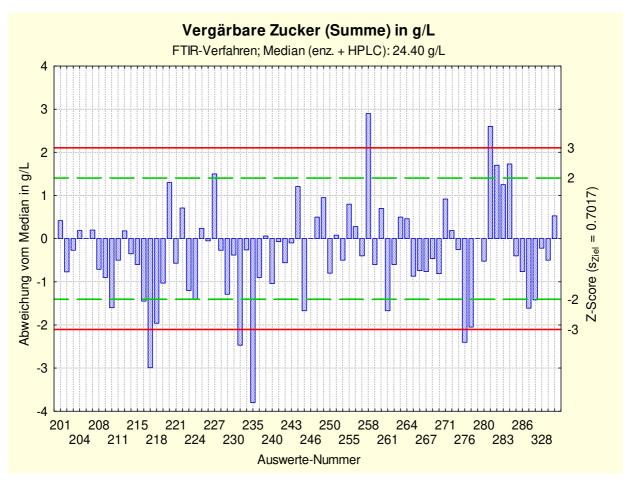
Fortsetzung: FTIR-Laborergebnisse für Vergärbare Zucker(S) (informative Bewertung)

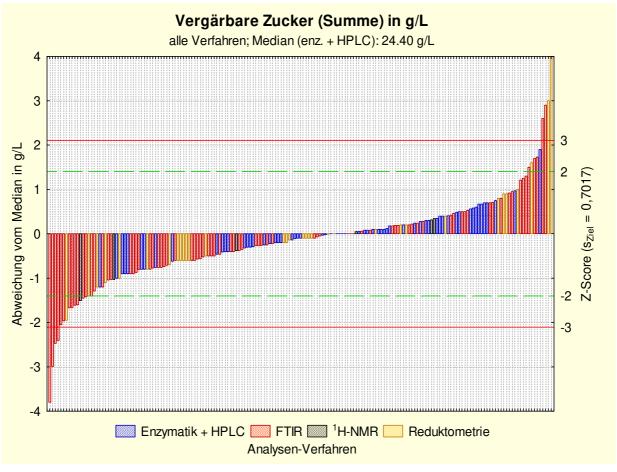
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
275	LwK 4.8	23,60	-0,800	-0.94	-1,14	
276	LwK 4.8	22,00	-2,400	-2,81	-3,42	
277	LwK 4.8	22,35	-2,050	-2,40	-2,92	
278	LwK 4.8	24,40	0,000	0,00	0,00	
280	LwK 4.8	23,88	-0,520	-0,61	-0,74	
281	LwK 4.8	27,00	2,600	3,05	3,71	
282	LwK 4.8	26,10	1,700	1,99	2,42	
283	LwK 4.8	25,65	1,250	1,46	1,78	
284	LwK 4.8	26,13	1,730	2,03	2,47	
285	LwK 4.8	24,00	-0,400	-0,47	-0,57	
286	LwK 4.8	23,64	-0,760	-0,89	-1,08	
287	LwK 4.8	23,90	-0,500	-0,59	-0,71	
312	LwK 4.8	22,79	-1,610	-1,89	-2,29	
321	LwK 4.8	22,98	-1,420	-1,66	-2,02	
328	LwK 4.8	24,18	-0,220	-0,26	-0,31	
330	LwK 4.8	23,90	-0,500	-0,59	-0,71	
337	LwK 4.8	24,93	0,530	0,62	0,76	


6.8.4 Deskriptive Ergebnisse


Ergebnisse für Vergärbare Zucker [g/L]	
nur HPLC + enzymatisch	alle Daten
Gültige Werte	63
Minimalwert	23,20
Mittelwert	24,409
Median	24,400
Maximalwert	26,30
Standardabweichung (s _L)	0,539
Standardfehler des Mittelwertes (u _M)	0,068
Zielstandardabweichung n. Horwitz (s _H)	0,853
Zielstandardabweichung, experimentell (sexp herk.)	0,702
Zielstandardabweichung, experimentell (sü FTIR)	(0,584)
Horrat-Wert (s _L /s _H)	0,63
Quotient (s _L /s _{exp herk.})	0,77
Quotient (s _L /s _{Ü FTIR})	(0,92)
Quotient (u _M /s _H)	0,08
Quotient (u _M /s _{exp herk.})	0,10
Quotient (u _M /s _{Ü FTIR})	(0,12)


^{*)} Die Bewertung der FTIR-Ergebnisse erfolgte mit der herkömmlichen Zielstandardabweichung.


6.8.5 Angaben zu den Analyseverfahren


Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
LwK 4.1	Bestimmung n. Luff-Schoorl; OIV-MA-AS311-01A	1	24,500	
LwK 4.3	Schnellmethode n. Dr. Jakob	3	23,735	0,129
LwK 4.4	Schnellmethode n. Dr. Rebelein	29	24,340	0,910
	reduktometrische Verfahren	33	24,256	0,844
LwK 4.5	Enzymatische Methode; OIV-MA-AS311-02	41	24,400	0,533
LwK 4.7	Hochleistungsflüssigkeitschromatographie; OIV-MA-AS311-03	22	24,422	0,440
	Enzymatik und HPLC	63	24,406	0,505
LwK 4.8	Fourier-Transform-Infrarotspektroskopie (Basis "wie mitgeteilt")	80	23,806	0,763
LwK 4.8	Fourier-Transform-Infrarotspektroskopie (Basis Summe FTIR-Glucose + FTIR-Fructose	79	24,080	0,987
NMR	¹ H-Kernresonanzspektroskopie	6	24,032	0,860

6.9 Glucose [g/L]

Stand: 02.03.2021

6.9.1 Herkömmliche Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score	Hinweis
01	anzumat Hand	10.05	0.050		exper.	
01	enzymat. Hand	12,85	0,850	1,82	2,32	
02	enzymat., autom.	11,77	-0,230	-0,49	-0,63	
03	enzymat., autom.	12,10	0,100	0,21	0,27	
04	enzymat., autom. 2	12,34	0,340	0,73	0,93	
05	enzymat., autom.	11,90	-0,100	-0,21	-0,27	
08	enzymat. Hand	11,92	-0,080	-0,17	-0,22	
09	HPLC	12,00	0,000	0,00	0,00	
10	enzymat., autom.	11,76	-0,240	-0,51	-0,65	
11	HPLC	12,13	0,130	0,28	0,35	
12	HPLC	12,00	0,000	0,00	0,00	
13	enzymat., autom.	11,80	-0,200	-0,43	-0,55	
14	HPLC	11,93	-0,069	-0,15	-0,19	
15	enzymat., autom.	12,12	0,120	0,26	0,33	
16	enzymat., autom.	12,40	0,400	0,86	1,09	
19	enzymat., autom.	11,96	-0,040	-0,09	-0,11	
21	HPLC	12,24	0,240	0,51	0,65	
		12,11				
22	HPLC		0,110	0,24	0,30	
23	HPLC	10,90	-1,100	-2,36	-3,00	
26	enzymat., autom.	11,75	-0,250	-0,54	-0,68	
27	HPLC	11,60	-0,400	-0,86	-1,09	
30	enzymat., autom.	11,70	-0,305	-0,65	-0,83	
31	HPLC	11,90	-0,100	-0,21	-0,27	
35	enzymat., autom.	11,90	-0,100	-0,21	-0,27	
38	enzymat., autom.	12,10	0,100	0,21	0,27	
39	HPLC	11,70	-0,300	-0,64	-0,82	
40	enzymat., autom.	12,01	0,008	0,02	0,02	
41	enzymat., autom.	11,70	-0,300	-0,64	-0,82	
42	enzymat., autom.	12,14	0,137	0,29	0,37	
44	enzymat., autom.	11,90	-0,100	-0,21	-0,27	
45		12,30	0,300	0,64	0,82	
	enzymat., autom.					
46	enzymat., autom.	11,90	-0,100	-0,21	-0,27	
47	enzymat., autom.	11,90	-0,100	-0,21	-0,27	
49	enzymat., autom.	12,38	0,380	0,81	1,04	
51	enzymat., autom.	12,32	0,320	0,69	0,87	
52	enzymat., autom.	11,79	-0,210	-0,45	-0,57	
55	enzymat., autom.	12,01	0,010	0,02	0,03	
56	enzymat., autom.	12,17	0,171	0,37	0,47	
57	enzymat., autom.	12,00	0,000	0,00	0,00	
58	HPLC	12,24	0,240	0,51	0,65	
60	HPLC	12,00	0,000	0,00	0,00	
68	enzymat., autom.	11,87	-0,130	-0,28	-0,35	
78	enzymat. Hand	11,90	-0,100	-0,21	-0,27	
91	HPLC	11,82	-0,180	-0,39	-0,49	
99	HPLC	12,08	0,076	0,16	0,43	
110	HPLC	11,40	-0,600	-1,28	-1,64	
111	NMR	11,29	-0,706	-1,51	-1,04	
112	NMR	12,38	0,381	0,82	1,04	
113	NMR	11,52	-0,480	-1,03	-1,31	
114	NMR	11,94	-0,057	-0,12	-0,15	
115	NMR	12,05	0,050	0,11	0,14	
116	NMR	12,07	0,072	0,16	0,20	
117	NMR	12,29	0,289	0,62	0,79	
121	HPLC	12,01	0,010	0,02	0,03	
122	HPLC	12,08	0,080	0,17	0,22	
126	HPLC	12,03	0,030	0,06	0,08	
127	HPLC	13,00	1,000	2,14	2,73	
129	enzymat., autom.	11,93	-0,070	-0,15	-0,19	
130	enzymat., autom.	12,13	0,130	0,28	0,35	
131	enzymat., autom.	12,10	0,100	0,20	0,33	
133	HPLC	11,95	-0,050 0,400	-0,11	-0,14	
140	HPLC	12,40	0,400	0,86	1,09	
141	enzymat., autom.	12,30	0,300	0,64	0,82	
142	enzymat., autom.	12,20	0,200	0,43	0,55	
143	enzymat., autom.	11,89	-0,110	-0,24	-0,30	
145	HPLC	12,01	0,010	0,02	0,03	
148	enzymat., autom.	12,30	0,300	0,64	0,82	

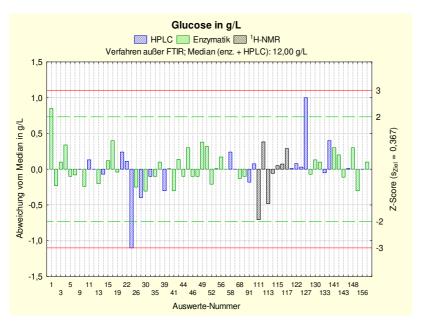
Fortsetzung: Herkömmliche Laborergebnisse

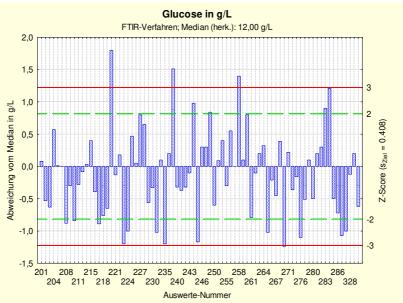
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
150	FTIR	13,70	1,700	3,64	4,63	
152	enzymat., autom.	11,70	-0,300	-0,64	-0,82	
156	HPLC	12,00	0,000	0,00	0,00	
157	enzymat., autom.	12,10	0,100	0,21	0,27	

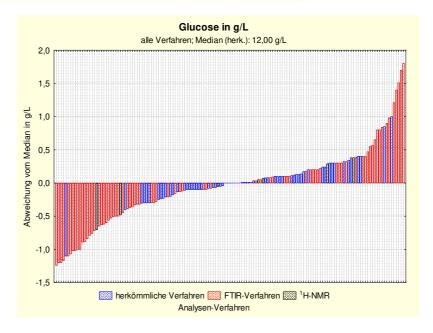
6.9.2 FTIR-Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinwei
201	FTIR	12,08	0,080	0,17	0,20	
202	FTIR	11,47	-0,530	-1,13	-1,30	
203	FTIR	11,37	-0,630	-1,35	-1,54	
204	FTIR	12,57	0,570	1,22	1,40	
205	FTIR	12,01	0,010	0,02	0,02	
207	FTIR	12,00	0,000	0,02	0,02	
208	FTIR	11,12		-1,88	-2,16	
			-0,880			
209	FTIR	11,70	-0,300	-0,64	-0,74	
210	FTIR	11,16	-0,840	-1,80	-2,06	
211	FTIR	11,72	-0,280	-0,60	-0,69	
212	FTIR	11,92	-0,080	-0,17	-0,20	
213	FTIR	12,03	0,030	0,06	0,07	
215	FTIR	12,40	0,400	0,86	0,98	
216	FTIR	11,61	-0,390	-0,84	-0,96	
217	FTIR	11,11	-0,890	-1,91	-2,18	
218	FTIR	11,24	-0,760	-1,63	-1,86	
219	FTIR	11,35	-0,650	-1,39	-1,59	
220	FTIR	13,80	1,800	3,85	4,41	
221	FTIR	11,87	-0,130	-0,28	-0,32	
222	FTIR	12,18	0,180	0,39	0,44	
223	FTIR	10,80	-1,200	-2,57	-2,94	
224	FTIR	11,00	-1,000	-2,14	-2,45	
225	FTIR	12,47	0,470	1,01	1,15	
226	FTIR	12,05	0,050	0,11	0,12	
227	FTIR	12,80	0,800	1,71	1,96	
228	FTIR	12,65	0,650	1,39	1,59	
229	FTIR	11,44	-0,560	-1,20	-1,37	
230	FTIR	11,67	-0,330	-0,71	-0,81	
232	FTIR	10,98	-1,020	-2,18	-2,50	
234	FTIR	12,10	0,100	0,21	0,25	
235	FTIR	10,80	-1,200	-2,57	-2,94	
236	FTIR	12,20	0,200	0,43	0,49	
237	FTIR	13,51	1,510	3,23	3,70	
240	FTIR	11,68	-0,320	-0,69	-0,78	
241	FTIR	11,63	-0,370	-0,79	-0,91	
242	FTIR	11,68	-0,320	-0,75	-0,78	
243	FTIR	11,90		-0,03	-0,76	
			-0,100			
244	FTIR	12,98	0,980	2,10	2,40	
245	FTIR	10,83	-1,170	-2,51	-2,87	
246	FTIR	12,30	0,300	0,64	0,74	
248	FTIR	12,30	0,300	0,64	0,74	
249	FTIR	12,84	0,840	1,80	2,06	
250	FTIR	11,40	-0,600	-1,28	-1,47	
251	FTIR	12,09	0,090	0,19	0,22	
253	FTIR	12,40	0,400	0,86	0,98	
255	FTIR	11,70	-0,300	-0,64	-0,74	
256	FTIR	12,55	0,550	1,18	1,35	
257	FTIR	12,00	0,000	0,00	0,00	
258	FTIR	13,40	1,400	3,00	3,43	
259	FTIR	12,10	0,100	0,21	0,25	
260	FTIR	12,80	0,800	1,71	1,96	
261	FTIR	11,21	-0,790	-1,69	-1,94	
262	FTIR	11,90	-0,100	-0,21	-0,25	
263	FTIR	12,20	0,200	0,43	0,49	
264	FTIR	12,32	0,320	0,69	0,78	
265	FTIR	10,98	-1,020	-2,18	-2,50	
266	FTIR	11,79	-0,210	-0,45	-0,51	

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
267	FTIR	11,55	-0,450	-0,96	-1,10	
269	FTIR	12,39	0,390	0,84	0,96	
270	FTIR	10,76	-1,240	-2,66	-3,04	
271	FTIR	12,22	0,220	0,47	0,54	
273	FTIR	11,64	-0,360	-0,77	-0,88	
274	FTIR	11,84	-0,160	-0,34	-0,39	
275	FTIR	12,97	0,970	2,08	2,38	
276	FTIR	10,90	-1,100	-2,36	-2,70	
277	FTIR	11,49	-0,510	-1,09	-1,25	
278	FTIR	12,10	0,100	0,21	0,25	
280	FTIR	11,50	-0,500	-1,07	-1,23	
281	FTIR	12,20	0,200	0,43	0,49	
282	FTIR	12,30	0,300	0,64	0,74	
283	FTIR	12,90	0,900	1,93	2,21	
284	FTIR	13,21	1,210	2,59	2,97	
285	FTIR	11,50	-0,500	-1,07	-1,23	
286	FTIR	11,28	-0,720	-1,54	-1,76	
287	FTIR	11,50	-0,500	-1,07	-1,23	
312	FTIR	10,93	-1,070	-2,29	-2,62	
321	FTIR	11,00	-1,000	-2,14	-2,45	
328	FTIR	11,88	-0,120	-0,26	-0,29	
330	FTIR	12,20	0,200	0,43	0,49	
337	FTIR	11,38	-0,620	-1,33	-1,52	


6.9.3 Deskriptive Ergebnisse


Ergebnisse für Glucose [g/L]	alle Daten
Gültige Werte	61
Minimalwert	10,90
Mittelwert	12,023
Median	12,000
Maximalwert	13,00
Standardabweichung (s _L)	0,292
Standardfehler des Mittelwertes (u _M)	0,037
Zielstandardabweichung n. Horwitz (s _H)	0,467
Zielstandardabweichung, experimentell (sexp herk.)	0,367
Zielstandardabweichung, experimentell (sü FTIR)	0,408
Horrat-Wert (s _L /s _H)	0,62
Quotient (s _L /s _{exp herk.})	0,79
Quotient (s _L /s _{Ü FTIR})	0,71
Quotient (u _M /s _H)	0,08
Quotient (u _M /s _{exp herk.})	0,10
Quotient (u _M /sü _{FTIR})	0,09


6.9.4 Angaben zu den Analyseverfahren

Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
HPLC	Hochleistungsflüssigkeitschromatographie OIV-MA-AS311-03	22	12,014	0,196
enzymat. autom.	enzymatisch, automatisiertes Verfahren OIV-MA-AS311-02	35	12,005	0,223
enzymat. autom. 2	enzymatisch, automatisiert OIV-MA-AS313-29	1	12,340	
enzymat. Hand	enzymatisch manuell OIV-MA-AS311-02	3	12,216	0,600
	herkömmliche Verfahren	61	12,015	0,220
FTIR	Fourier-Transform-Infrarotspektroskopie	79	11,875	0,687
NMR	¹ H-Kernresonanzspektroskopie	7	11,939	0,441

Probe FT20P01: Glucose

6.10.1 Herkömmliche Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinwei
01	enzymat. Hand	12,52	0,055	0,11	0,14	
02	enzymat., autom.	12,01	-0,455	-0,94	-1,20	
03	HPĹC	12,60	0,135	0,28	0,36	
04	enzymat., autom. 2	12,49	0,025	0,05	0,07	
05	enzymat., autom.	12,30	-0,165	-0,34	-0,43	
08	enzymat. Hand	12,02	-0,445	-0,92	-1,17	
09	HPLC	12,50	0,035	0,07	0,09	
10	enzymat., autom.	11,71	-0,755	-1,57	-1,99	
11	HPLC	12,35	-0,115	-0,24	-0,30	
12	HPLC	12,50	0,035	0,07	0,09	
13	enzymat., autom.	12,40	-0,065	-0,13	-0,17	
14	HPLC	12,40	-0,065	-0,13	-0,17	
15	enzymat., autom.	11,87	-0,595	-1,23	-1,57	
16	enzymat., autom.	12,50	0,035	0,07	0,09	
19	enzymat., autom.	12,22	-0,245	-0,51	-0,65	
21	HPLC	12,64	0,175	0,36	0,46	
22	HPLC	12,27	-0,195	-0,40	-0,51	
23	HPLC	12,50	0,035	0,07	0,09	
26	enzymat., autom.	12,33	-0,135	-0,28	-0,36	
27	HPLC	11,90	-0,565	-1,17	-1,49	
30	enzymat., autom.	12,66	0,192	0,40	0,51	
31	HPLC	12,47	0,005	0,01	0,01	
35	enzymat., autom.	12,30	-0,165	-0,34	-0,43	
38	enzymat., autom.	13,05	0,585	1,21	1,54	
39	HPLC	12,30	-0,165	-0,34	-0,43	
40	enzymat., autom.	12,55	0,081	0,17	0,21	
41	enzymat., autom.	12,33	-0,135	-0,28	-0,36	
42	enzymat., autom.	12,49	0,024	0,05	0,06	
44	enzymat., autom.	12,20	-0,265	-0,55	-0,70	
45	enzymat., autom.	12,40	-0,065	-0,13	-0,17	
46	enzymat., autom.	12,40	-0,065	-0,13	-0,17	
47	enzymat., autom.	12,30	-0,165	-0,34	-0,43	
49	enzymat., autom.	12,60	0,135	0,28	0,36	
51	enzymat., autom.	12,50	0,035	0,07	0,09	
52	enzymat., autom.	12,60	0,135	0,28	0,36	
55	enzymat., autom.	12,25	-0,215	-0,45	-0,57	
56	enzymat., autom.	12,45	-0,013	-0,03	-0,03	
57	enzymat., autom.	12,60	0,135	0,28	0,36	
58	HPLC	12,83	0,365	0,76	0,96	
60	HPLC	12,50	0,035	0,07	0,09	
68	enzymat., autom.	12,09	-0,375	-0,78	-0,99	
78	enzymat. Hand	11,74	-0,725	-1,50	-1,91	
91	HPLC	12,97	0,505	1,05	1,33	
99	HPLC	12,38	-0,090	-0,19	-0,24	
111	NMR	11,60	-0,865	-1,79	-2,28	
112	NMR	12,33	-0,140	-0,29	-0,37	
113	NMR	11,85	-0,615	-1,28	-1,62	
114	NMR	12,00	-0,469	-0,97	-1,24	
115	NMR	12,40	-0,065	-0,13	-0,17	
116	NMR	12,57	0,107	0,22 -2,04	0,28	
117	NMR	11,48	-0,985		-2,60	
121 126	HPLC HPLC	12,46 12,47	-0,005 0,005	-0,01 0,01	-0,01 0,01	
127	HPLC	13,30	0,835	1,73	2,20	
127	enzymat., autom.	12,36	-0,105	-0,22	-0,28	
130		12,36	-0,105 -0,015	-0,22 -0,03	-0,28 -0,04	
130	enzymat., autom.	12,45	-0,015 0,075	-0,03 0,16	0,04	
133	enzymat., autom.	12,54 12,42				
140	HPLC		-0,045 0.235	-0,09 0,49	-0,12 0.62	
140	HPLC	12,70 12,50	0,235		0,62	
141	enzymat., autom.	12,50 12,50	0,035 0,035	0,07 0,07	0,09 0,09	
142	enzymat., autom.	12,50 12,26	-0,205	-0,43	-0,54	
143	enzymat., autom. HPLC	12,26	-0,205 0,005	-0,43 0,01	-0,54 0,01	
148	enzymat., autom.	12,47	0,005	0,40	0,01	
	onzymai., autom.	12,00	0,130	-2,00	0,01	

Probe FT20P01: Fructose

Fortsetzung: Herkömmliche Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
152	enzymat., autom.	11,90	-0,565	-1,17	-1,49	
156	HPLC	12,52	0,055	0,11	0,14	
157	enzymat., autom.	12,70	0,235	0,49	0,62	

FTIR-Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
201 I	FTIR	12,74	0,275	0,57	0,72	
	FTIR	12,16	-0,305	-0,63	-0,80	
	FTIR	12,76	0,295	0,61	0,78	
	FTIR	12,02	-0,445	-0,92	-1,17	
	FTIR	12,39	-0,075	-0,16	-0,20	
207 I	FTIR	12,60	0,135	0,28	0,36	
	FTIR	12,57	0,105	0,22	0,28	
	FTIR	11,80	-0,665	-1,38	-1,75	
	FTIR	11,64	-0,825	-1,71	-2,17	
	FTIR	12,18	-0,285	-0,59	-0,75	
	FTIR	12,66	0,195	0,40	0,51	
	FTIR	12,02	-0,445	-0,92	-1,17	
	FTIR	11,40	-1,065	-2,21	-2,81	
	FTIR	11,34	-1,125	-2,33	-2,96	
	FTIR	10,30	-2,165	-4,49	-5,71	(***)
	FTIR	11,20	-1,265	-2,62	-3,33	
	FTIR	12,02	-0,445	-0,92	-1,17	
	FTIR	11,90	-0,565	-1,17	-1,49	
	FTIR	11,96	-0,505	-1,05	-1,33	
	FTIR	12,93	0,465	0,96	1,23	
	FTIR	12,40	-0,065	-0,13	-0,17	
	FTIR	12,00	-0,465	-0,96	-1,23	
	FTIR	12,17	-0,295	-0,61	-0,78	
	FTIR	12,30	-0,165	-0,34	-0,43	
	FTIR	13,10	0,635	1,32	1,67	
	FTIR	11,48	-0,985	-2,04	-2,60	
	FTIR	11,67	-0,795	-1,65	-2,10	
	FTIR	12,35	-0,115	-0,24	-0,30	
	FTIR	10,95	-1,515 0.425	-3,14	-3,99	
	FTIR FTIR	12,04 9,80	-0,425	-0,88 5.53	-1,12 -7,02	(***)
	FTIR	11,30	-2,665 -1,165	-5,53 -2,42	-7,02	()
	FTIR	10,95	-1,515	-3,14	-3,99	
	FTIR	11,68	-0,785	-1,63	-2,07	
	FTIR	12,70	0,235	0,49	0,62	
	FTIR	12,16	-0,305	-0,63	-0,80	
	FTIR	12,40	-0,065	-0,13	-0,17	
	FTIR	12,63	0,165	0,34	0,43	
	FTIR	11,90	-0,565	-1,17	-1,49	
	FTIR	12,10	-0,365	-0,76	-0,96	
	FTIR	12,60	0,135	0,28	0,36	
	FTIR	12,51	0,045	0,09	0,12	
	FTIR	12,20	-0,265	-0,55	-0,70	
	FTIR	12,39	-0,075	-0,16	-0,20	
	FTIR	11,50	-0,965	-2,00	-2,54	
	FTIR	13,50	1,035	2,15	2,73	
	FTIR	12,13	-0,335	-0,69	-0,88	
257 I	FTIR	12,00	-0,465	-0,96	-1,23	
	FTIR	13,90	1,435	2,98	3,78	
	FTIR	11,70	-0,765	-1,59	-2,02	
	FTIR	12,30	-0,165	-0,34	-0,43	
	FTIR	11,52	-0,945	-1,96	-2,49	
	FTIR	11,90	-0,565	-1,17	-1,49	
	FTIR	12,70	0,235	0,49	0,62	
	FTIR	12,54	0,075	0,16	0,20	
265 I	FTIR	12,55	0,085	0,18	0,22	

^(***) Die markierten Werte weichen um mehr als 5 Z-Score-Einheiten vom maßgeblichen Median ab.

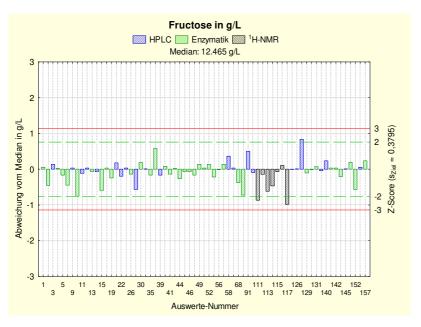
Probe FT20P01: Fructose

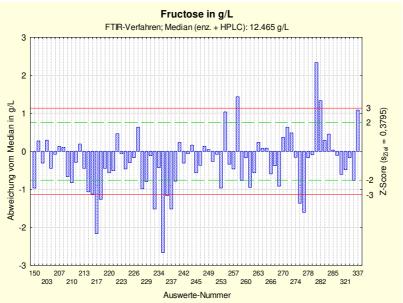
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
266	FTIR	11,87	-0,595	-1,23	-1,57	
267	FTIR	12,09	-0,375	-0,78	-0,99	
269	FTIR	11,55	-0,915	-1,90	-2,41	
270	FTIR	12,83	0,365	0,76	0,96	
271	FTIR	13,10	0,635	1,32	1,67	
273	FTIR	12,95	0,485	1,01	1,28	
274	FTIR	12,31	-0,155	-0,32	-0,41	
275	FTIR	10,63	-1,835	-3,80	-4,84	
276	FTIR	11,10	-1,365	-2,83	-3,60	
277	FTIR	10,86	-1,605	-3,33	-4,23	
278	FTIR	12,30	-0,165	-0,34	-0,43	
280	FTIR	12,38	-0,085	-0,18	-0,22	
281	FTIR	14,80	2,335	4,84	6,15	(***)
282	FTIR	13,80	1,335	2,77	3,52	, ,
283	FTIR	12,75	0,285	0,59	0,75	
284	FTIR	12,92	0,455	0,94	1,20	
285	FTIR	12,50	0,035	0,07	0,09	
286	FTIR	12,36	-0,105	-0,22	-0,28	
287	FTIR	12,40	-0,065	-0,13	-0,17	
312	FTIR	11,86	-0,605	-1,25	-1,59	
321	FTIR	11,98	-0,485	-1,01	-1,28	
328	FTIR	12,30	-0,165	-0,34	-0,43	
330	FTIR	11,70	-0,765	-1,59	-2,02	
337	FTIR	13,55	1,085	2,25	2,86	

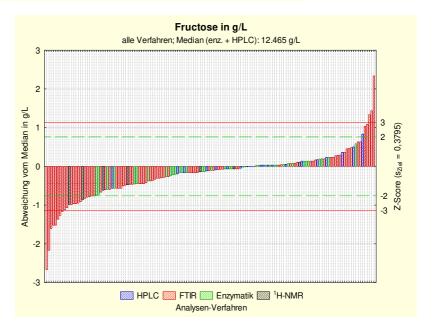
^(***) Der markierte Wert weicht um mehr als 5 Z-Score-Einheiten vom maßgeblichen Median ab.

6.10.2 Deskriptive Ergebnisse

Ergebnisse für Fructose [g/L]	alle Daten
Gültige Werte	60
Minimalwert	11,71
Mittelwert	12,420
Median	12,465
Maximalwert	13,30
Standardabweichung (s _L)	0,283
Standardfehler des Mittelwertes (u _M)	0,036
Zielstandardabweichung n. Horwitz (s _H)	0,482
Zielstandardabweichung, experimentell (sexp herk.)	0,379
Zielstandardabweichung, experimentell (sü FTIR)	(0,330)
Horrat-Wert (s _L /s _H)	0,59
Quotient (s _L /s _{exp herk.})	0,74
Quotient (s _L /s _{Ü FTIR})	(0,86)
Quotient (u _M /s _H)	0,08
Quotient (u _M /s _{exp herk.})	0,10
Quotient (u _M /sü FTIR)	(0,11)


^{*)} Die Bewertung der FTIR-Ergebnisse erfolgte mit der herkömmlichen Zielstandardabweichung.


6.10.3 Angaben zu den Analyseverfahren


Stand: 02.03.2021

Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
HPLC	Hochdruckflüssigkeitschromatographie, OIV-MA-AS311-03	22	12,498	0,173
enzymat. autom.	enzymatisch, automatisiert, OIV-MA-AS311-02	34	12,395	0,220
enzymat. autom. 2	enzymatisch, automatisiert OIV-MA-AS313-29	1	12,490	
enzymat. Hand	enzymatisch, manuell, OIV-MA-AS311-02	3	12,093	0,448
	alle herkömmlichen Verfahren	60	12,429	0,205
FTIR	Fourier-Transform-Infrarotspektroskopie	79	12,169	0,636
NMR	¹ H-Kernresonanzspektroskopie	7	12,032	0,472

Probe FT20P01: Fructose

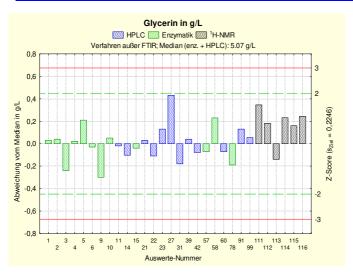
6.11 Glycerin [g/L]

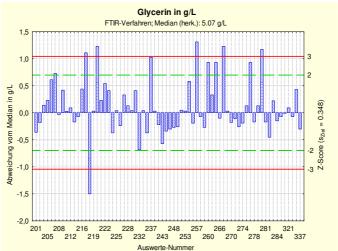
6.11.1 Herkömmliche Laborergebnisse

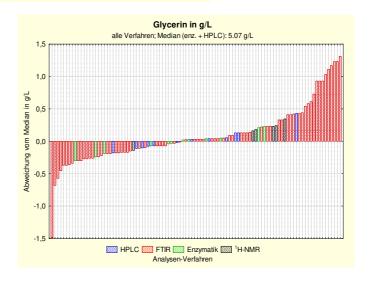
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Hinweis
01	enzymat. Hand	5,10	0.030	0,13	
02	enzymat. autom.	5,11	0,040	0,18	
03	enzymat. autom.	4,83	-0,240	-1,07	
04	enzymat. autom.	5,09	0,020	0,09	
05	enzymat. autom.	5,28	0,210	0,93	
06	enzymat. Hand	5,04	-0,030	-0,13	
09	enzymat. autom.	4,77	-0,300	-1,34	
10	enzymat. Hand	5,12	0,050	0,22	
11	HPĽC	5,05	-0,020	-0,09	
14	HPLC	4,97	-0,103	-0,46	
15	enzymat. autom.	5,03	-0,040	-0,18	
21	HPLC	5,10	0,030	0,13	
22	HPLC	4,96	-0,110	-0,49	
23	HPLC	5,20	0,130	0,58	
27	HPLC	5,50	0,430	1,91	
31	HPLC	4,89	-0,180	-0,80	
39	HPLC	5,11	0,040	0,18	
42	HPLC	4,99	-0,078	-0,35	
57	enzymat. autom.	5,00	-0,070	-0,31	
58	enzymat. autom.	5,30	0,230	1,02	
60	HPLC	5,00	-0,070	-0,31	
78	enzymat. Hand	4,88	-0,190	-0,85	
91	HPLC	5,20	0,130	0,58	
99	HPLC	5,12	0,054	0,24	
111	NMR	5,42	0,345	1,54	
112	NMR	5,25	0,181	0,81	
113	NMR	4,93	-0,140	-0,62	
114	NMR	5,30	0,232	1,03	
115	NMR	5,23	0,160	0,71	
116	NMR	5,31	0,244	1,09	

6.11.2 FTIR-Laborergebnisse

	J					
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score	Z-Score	Hinweis
				Horwitz	exper.	
201	FTIR	4,71	-0,360	-1,60	-1,03	
202	FTIR	4,89	-0,180	-0,80	-0,52	
203	FTIR	5,21	0,140	0,62	0,40	
205	FTIR	5,30	0,230	1,02	0,66	
206	FTIR	5,68	0,610	2,72	1,75	
207	FTIR	5,80	0,730	3,25	2,10	
208	FTIR	5,04	-0,030	-0,13	-0,09	
210	FTIR	5,49	0,420	1,87	1,21	
211	FTIR	5,09	0,025	0,11	0,07	
212	FTIR	5,16	0,090	0,40	0,26	
213	FTIR	4,90	-0,170	-0,76	-0,49	
215	FTIR	5,00	-0,070	-0,31	-0,20	
216	FTIR	5,51	0,440	1,96	1,26	
217	FTIR	6,18	1,110	4,94	3,19	
218	FTIR	3,57	-1,500	-6,68	-4,31	
219	FTIR	5,10	0,030	0,13	0,09	
220	FTIR	6,30	1,230	5,48	3,53	
221	FTIR	5,30	0,230	1,02	0,66	
222	FTIR	5,61	0,540	2,40	1,55	
223	FTIR	5,48	0,410	1,83	1,18	
224	FTIR	4,70	-0,370	-1,65	-1,06	
225	FTIR	5,11	0,040	0,18	0,11	
226	FTIR	4,83	-0,240	-1,07	-0,69	
227	FTIR	5,40	0,330	1,47	0,95	
228	FTIR	5,20	0,130	0,58	0,37	
229	FTIR	5,11	0,040	0,18	0,11	
230	FTIR	5,48	0,410	1,83	1,18	
232	FTIR	4,39	-0,680	-3,03	-1,95	


Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
234	FTIR	5,11	0,040	0,18	0,11	
236	FTIR	4,70	-0,370	-1,65	-1,06	
237	FTIR	6,10	1,030	4,59	2,96	
240	FTIR	5,10	0,030	0,13	0,09	
241	FTIR	4,85	-0,220	-0,98	-0,63	
243	FTIR	4,50	-0,570	-2,54	-1,64	
244	FTIR	4,73	-0,340	-1,51	-0,98	
245	FTIR	4,77	-0,300	-1,34	-0,86	
248	FTIR	4,80	-0,270	-1,20	-0,78	
249	FTIR	4,81	-0,260	-1,16	-0,75	
251	FTIR	5,12	0,050	0,22	0,14	
253	FTIR	5,10	0,030	0,13	0,09	
255	FTIR	5,65	0,580	2,58	1,67	
256	FTIR	4,88	-0,190	-0,85	-0,55	
257	FTIR	6,38	1,310	5,83	3,76	
258	FTIR	5,00	-0,070	-0,31	-0,20	
259	FTIR	4,80	-0,270	-1,20	-0,78	
260	FTIR	6,00	0,930	4,14	2,67	
262	FTIR	5,40	0,330	1,47	0,95	
265	FTIR	6,00	0,930	4,14	2,67	
266	FTIR	4,97	-0,100	-0,45	-0,29	
267	FTIR FTIR	6,30	1,230	5,48	3,53	
269 270	FTIR	5,10	0,030	0,13	0,09	
270 271	FTIR	4,89 4,96	-0,180 -0,110	-0,80 -0,49	-0,52	
273	FTIR	4,96 4,81	-0,110	-0,49 -1,16	-0,32 -0,75	
273 274	FTIR	4,88	-0,200	-0,85	-0,75	
276	FTIR	5,20	0,130	0,58	0,37	
277	FTIR	6,00	0,930	4,14	2,67	
278	FTIR	4,90	-0,170	-0,76	-0,49	
279	FTIR	5,20	0,130	0,58	0,37	
280	FTIR	6,24	1,170	5,21	3,36	
281	FTIR	4,90	-0,170	-0,76	-0,49	
282	FTIR	4,62	-0,450	-2,00	-1,29	
283	FTIR	5,29	0,220	0,98	0,63	
284	FTIR	4,92	-0,150	-0,67	-0,43	
285	FTIR	5,00	-0,070	-0,31	-0,20	
286	FTIR	5,06	-0,010	-0,04	-0,03	
321	FTIR	5,16	0,090	0,40	0,26	
328	FTIR	5,00	-0,070	-0,31	-0,20	
330	FTIR	5,50	0,430	1,91	1,24	
337	FTIR	4,77	-0,300	-1,34	-0,86	


6.11.3 Deskriptive Ergebnisse


Ergebnisse für Glycerin [g/L]	alle Daten
Gültige Werte	24
Minimalwert	4,77
Mittelwert	5,068
Median	5,070
Maximalwert	5,50
Standardabweichung (s _L)	0,159
Standardfehler des Mittelwertes (u _M)	0,033
Zielstandardabweichung n. Horwitz (s _H)	0,225
Zielstandardabweichung, experimentell (sexp herk.)	
Zielstandardabweichung, experimentell (sü FTIR)	0,348
Horrat-Wert (s∟/s _H)	0,71
Quotient (s _L /s _{Ü FTIR})	0,46
Quotient (u _M /s _H)	0,14
Quotient (u _M /sü _{FTIR})	0,09

6.11.4 Angaben zu den Analyseverfahren

Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
HPLC	Hochleistungsflüssigkeitschromatographie	12	5,072	0,130
enzymat. autom.	enzymatisch, automatisiert	8	5,051	0,214
enzymat. Hand	enzymatisch manuell	4	5,040	0,114
	alle herkömmlichen Verfahren	24	5,064	0,144
FTIR	Fourier-Transform-Infrarotspektroskopie	70	5,152	0,418
NMR	¹ H-Kernresonanzspektroskopie	6	5,263	0,127

6.12 pH-Wert

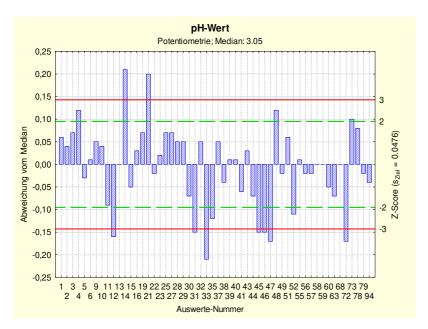
6.12.1 Herkömmliche Laborergebnisse

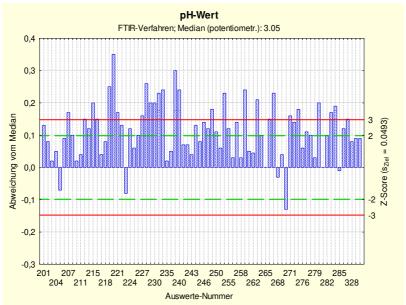
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score exper.	Hinweis
01	potentiometr.	3,11	0,060	1,26	
02	potentiometr.	3,09	0,040	0,84	
03	potentiometr.	3,12	0,070	1,47	
04	potentiometr.	3,17	0,120	2,52	
05	potentiometr.	3,02	-0,030	-0,63	
06	potentiometr.	3,06	0,010	0,21	
09	potentiometr.	3,10	0,050	1,05	
10	potentiometr.	3,09	0,040	0,84	
11					
	potentiometr.	2,96	-0,090	-1,89	
12	potentiometr.	2,89	-0,160	-3,36	
13	potentiometr.	3,05	0,000	0,00	
14	potentiometr.	3,26	0,210	4,41	
15	potentiometr.	3,00	-0,050	-1,05	
16	potentiometr.	3,08	0,030	0,63	
19	potentiometr.	3,12	0,070	1,47	
21	potentiometr.	3,25	0,200	4,20	
22	potentiometr.	3,03	-0,020	-0,42	
23	potentiometr.	3,07	0,020	0,42	
25	potentiometr.	3,12	0,070	1,47	
26	k. A.	3,04	-0,010	-0,21	
27	potentiometr.	3,12	0,070	1,47	
28	potentiometr.	3,10	0,050	1,05	
29	potentiometr.	3,10	0,050	1,05	
30	potentiometr.	2,98	-0,070	-1,47	
31	potentiometr.	2,90	-0,150	-3,15	
32				1,05	
	potentiometr.	3,10	0,050	1,05	
33	potentiometr.	2,84	-0,210	-4,41	
35	potentiometr.	2,93	-0,120	-2,52	
37	potentiometr.	3,10	0,050	1,05	
38	potentiometr.	3,01	-0,040	-0,84	
39	potentiometr.	3,06	0,010	0,21	
40	potentiometr.	3,06	0,010	0,21	
41	potentiometr.	2,99	-0,060	-1,26	
43	potentiometr.	3,08	0,030	0,63	
44	potentiometr.	2,98	-0,070	-1,47	
45	potentiometr.	2,90	-0,150	-3,15	
46	potentiometr.	2,90	-0,150	-3,15	
47	potentiometr.	2,88	-0,170	-3,57	
48	potentiometr.	3,17	0,120	2,52	
49	potentiometr.	3,03	-0,020	-0,42	
51	potentiometr.	3,11	0,060	1,26	
52	•	2,94	-0,110	-2,31	
	potentiometr.			-2,31 0.01	
55	potentiometr.	3,06	0,010	0,21	
56	potentiometr.	3,03	-0,020	-0,42	
57	potentiometr.	3,03	-0,020	-0,42	
58	potentiometr.	3,05	0,000	0,00	
59	potentiometr.	3,05	0,000	0,00	
60	potentiometr.	3,00	-0,050	-1,05	
63	potentiometr.	2,98	-0,070	-1,47	
68	potentiometr.	3,05	0,000	0,00	
72	potentiometr.	2,88	-0,170	-3,57	
73	potentiometr.	3,15	0,100	2,10	
78	potentiometr.	3,13	0,080	1,68	
79	potentiometr.	3,03	-0,020	-0,42	
	potentiometr.	3,01	-0,040	-0,84	
94	potentiometr	3 (1)			

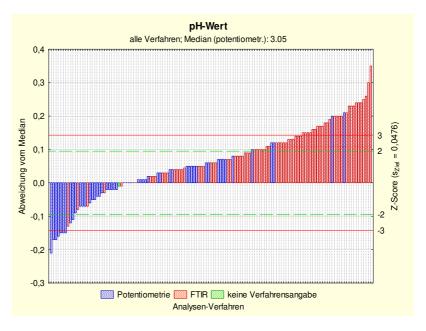
6.12.2 FTIR-Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score exper.	Hinwei
201	FTIR	3,18	0,130	2,64	
202	FTIR	3,13	0,080	1,62	
203	FTIR	3,07	0,020	0,41	
204	FTIR	3,10	0,050	1,01	
205	FTIR	2,98	-0,070	-1,42	
206	FTIR	3,14	0,090	1,83	
207	FTIR	3,22	0,170	3,45	
208	FTIR	3,15	0,100	2,03	
210	FTIR	3,07	0,020	0,41	
211	FTIR	3,09	0,040	0,81	
212	FTIR	3,20	0,150	3,04	
213	FTIR	3,17	0,120	2,43	
215	FTIR	3,25	0,200	4,06	
216	FTIR	3,20	0,150	3,04	
217	FTIR	3,09	0,040	0,81	
218	FTIR	3,13	0,040	1,62	
219	FTIR	3,30	0,250	5,07	(***)
220	FTIR	3,40	0,250	5,07 7,10	(***)
221	FTIR		0,330		()
222	FTIR	3,22		3,45	
223	FTIR	3,18	0,130	2,64	
		2,97	-0,080	-1,62	
224	FTIR	3,17	0,120	2,43	
225	FTIR	3,11	0,060	1,22	
226	FTIR	3,15	0,100	2,03	
227	FTIR	3,21	0,160	3,25	(+++\
228	FTIR	3,31	0,260	5,27	(***)
229	FTIR	3,25	0,200	4,06	
230	FTIR	3,25	0,200	4,06	
232	FTIR	3,28	0,230	4,67	
234	FTIR	3,29	0,240	4,87	
235	FTIR	3,07	0,020	0,41	
236	FTIR	3,10	0,050	1,01	(+++)
237	FTIR	3,35	0,300	6,09	(***)
240	FTIR	3,29	0,240	4,87	
241	FTIR	3,12	0,070	1,42	
242	FTIR	3,12	0,070	1,42	
243	FTIR	3,09	0,040	0,81	
244	FTIR	3,18	0,130	2,64	
245	FTIR	3,13	0,080	1,62	
246	FTIR	3,19	0,140	2,84	
248	FTIR	3,17	0,120	2,43	
249	FTIR	3,23	0,180	3,65	
250	FTIR	3,16	0,110	2,23	
251	FTIR	3,11	0,060	1,22	
253	FTIR	3,28	0,230	4,67	
255	FTIR	3,17	0,120	2,43	
256	FTIR	3,08	0,030	0,61	
257	FTIR	3,19	0,140	2,84	
258	FTIR	3,08	0,030	0,61	
259	FTIR	3,29	0,240	4,87	
260	FTIR	3,10	0,050	1,01	
262	FTIR	3,10	0,045	0,91	
263	FTIR	3,26	0,210	4,26	
264	FTIR	3,15	0,100	2,03	
265	FTIR	3,05	0,000	0,00	
266	FTIR	3,20	0,150	3,04	
267	FTIR	3,28	0,230	4,67	
268	FTIR	3,02	-0,030	-0,61	
269	FTIR	3,09	0,040	0,81	
270	FTIR	2,92	-0,130	-2,64	
271	FTIR	3,21	0,160	3,25	
273	FTIR	3,19	0,140	2,84	
274	FTIR	3,23	0,180	3,65	
275	FTIR	3,32	0,270	5,48	
_, _		5,02	0,060	1,22	

^(***) Diese Werte weichen um mehr als 5 Z-Score-Einheiten vom maßgeblichen Median ab.


Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score exper.	Hinweis
277	FTIR	3,16	0,110	2,23	
278	FTIR	3,15	0,100	2,03	
279	FTIR	3,08	0,030	0,61	
280	FTIR	3,25	0,200	4,06	
281	FTIR	3,05	0,000	0,00	
282	FTIR	3,15	0,100	2,03	
283	FTIR	3,22	0,170	3,45	
284	FTIR	3,24	0,190	3,85	
285	FTIR	3,04	-0,010	-0,20	
286	FTIR	3,17	0,120	2,43	
321	FTIR	3,20	0,150	3,04	
328	FTIR	3,13	0,080	1,62	
330	FTIR	3,14	0,090	1,83	
337	FTIR	3,14	0,090	1,83	


6.12.3 Deskriptive Ergebnisse


Ergebnisse für pH-Wert	alle Daten
Gültige Werte	54
Minimalwert	2,84
Mittelwert	3,043
Median	3,050
Maximalwert	3,26
Standardabweichung (s _L)	0,0901
Standardfehler des Mittelwertes (u _M)	0,0123
Zielstandardabweichung n. Horwitz (s _H)	
Zielstandardabweichung, experimentell (sexp herk.)	0,0476
Zielstandardabweichung, experimentell (sü FTIR)	0,0493
Horrat-Wert (s _L /s _H)	
Quotient (s _L /s _{exp herk.})	1,89
Quotient (s∟/sü _{FTIR})	1,83
Quotient (u _M /s _H)	
Quotient (u _M /s _{exp herk.})	0,26
Quotient (u _M /s _{Ü FTIR})	0,25

6.12.4 Angaben zu den Analyseverfahren

Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
potentiometr.	potentiometrisch	54	3,044	0,087
FTIR	Fourier-Transform-Infrarotspektroskopie	78	3,163	0,086
k. A.	keine Verfahrensangabe	1	3,040	
	alle Verfahren	133	3,115	0,103

6.13.1 Herkömmliche Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score	Hinweis
01	L/ F O 1	F F 4	0.000		exper.	
01 02	LwK 5.2.1	5,54 5,65	-0,260 0.150	-1,03	-2,43 1,40	
03	LwK 5.2.1 LwK 5.2.1	5,65 5,76	-0,150 0.040	-0,60 0.16	-1,40 -0,37	
03	LwK 5.2.1 LwK 5.2.1	5,76 5,90	-0,040 0,100	-0,16 0,40	0,93	
05						
06	LwK 5.1	5,70 5,86	-0,100	-0,40 0,24	-0,93	
07	LwK 5.2.1		0,060		0,56	
09	LwK 5.2.1	6,14 5.80	0,340	1,35	3,17	
10	LwK 5.2.1 LwK 5.1	5,80	0,000 -0,210	0,00 -0,83	0,00 -1,96	
11	LwK 5.1 LwK 5.2.1	5,59 5,72	-0,210	-0,83	-0,75	
12	LwK 5.2.1 LwK 5.1	5,72 5,90	0,100	0,40	0,73	
13		5,80				
14	LwK 5.1 LwK 5.1		0,000	0,00 0,00	0,00 0,00	
15		5,80 5.00	0,000			
	LwK 5.1	5,90 5,70	0,100	0,40	0,93	
16 10	LwK 5.2.1	5,70 5,77	-0,100	-0,40	-0,93	
19	LwK 5.2.1	5,77	-0,030	-0,12	-0,28	
20	LwK 5.1	5,68 5.80	-0,120 0,000	-0,48	-1,12	
21	LwK 5.1	5,80 5.52	0,000	0,00	0,00	
22	LwK 5.1 LwK 5.1	5,52	-0,280	-1,11	-2,61	
23	-	5,80	0,000	0,00	0,00	
24	LwK 5.1	5,60	-0,200	-0,79	-1,87	
25	LwK 5.1	6,08	0,280	1,11	2,61	
26	LwK 5.1	5,91	0,110	0,44	1,03	
27	LwK 5.1	5,80	0,000	0,00	0,00	
28	LwK 5.1	5,60	-0,200	-0,79	-1,87	
29	LwK 5.1	5,70	-0,100	-0,40	-0,93	
30	LwK 5.2.1	5,75	-0,050	-0,20	-0,47	
31	LwK 5.1	5,79	-0,010	-0,04	-0,09	
32	LwK 5.1	5,40	-0,400	-1,59	-3,73	
33	LwK 5.1	5,90	0,100	0,40	0,93	
34	LwK 5.2.1	5,54	-0,260	-1,03	-2,43	(44)
35	LwK 5.1	6,70	0,900	3,57	8,40	(**)
37	LwK 5.1	5,60	-0,200	-0,79	-1,87	
38	LwK 5.1	5,87	0,070	0,28	0,65	
39	LwK 5.2.1	5,74	-0,060	-0,24	-0,56	
40	LwK 5.1	6,00	0,197	0,78	1,84	
41	LwK 5.1	5,80	0,000	0,00	0,00	
42	LwK 5.1	5,59	-0,210	-0,83	-1,96	
43	LwK 5.1	5,90	0,100	0,40	0,93	
44	LwK 5.1	5,82	0,020	0,08	0,19	
45	LwK 5.2.1	5,80	0,000	0,00	0,00	
46	LwK 5.2.1	5,80	0,000	0,00	0,00	
47	LwK 5.1	5,90	0,100	0,40	0,93	
48	LwK 5.1	5,79	-0,010	-0,04	-0,09	
49	LwK 5.1	5,81	0,010	0,04	0,09	
51	LwK 5.2.1	5,80	0,000	0,00	0,00	
52	LwK 5.2.1	5,90	0,100	0,40	0,93	
54	LwK 5.2.1	6,00	0,200	0,79	1,87	
55	LwK 5.2.1	5,78	-0,020	-0,08	-0,19	
56	LwK 5.1	6,03	0,230	0,91	2,15	
57	LwK 5.2.1	5,70	-0,100	-0,40	-0,93	
58	LwK 5.1	5,87	0,070	0,28	0,65	
59	LwK 5.2.1	6,14	0,340	1,35	3,17	
60	LwK 5.2.1	6,10	0,300	1,19	2,80	
63	LwK 5.1	6,04	0,240	0,95	2,24	
68	LwK 5.1	5,70	-0,100	-0,40	-0,93	
72	LwK 5.1	6,70	0,900	3,57	8,40	(**)
73	LwK 5.1	5,50	-0,300	-1,19	-2,80	
78	LwK 5.1	5,81	0,010	0,04	0,09	
79	LwK 5.2.2	5,90	0,100	0,40	0,93	
94	LwK 5.2.1	5,80	0,000	0,00	0,00	
110	LwK 5.1	5,90	0,100	0,40	0,93	
121	LwK 5.1	5,90	0,100	0,40	0,93	

Probe FT20P01: Gesamtsäure

Die mit (**) gekennzeichneten Werte wurden bei der wiederholten Berechnung nicht berücksichtigt.

Fortsetzung: Herkömmliche Laborergebnisse

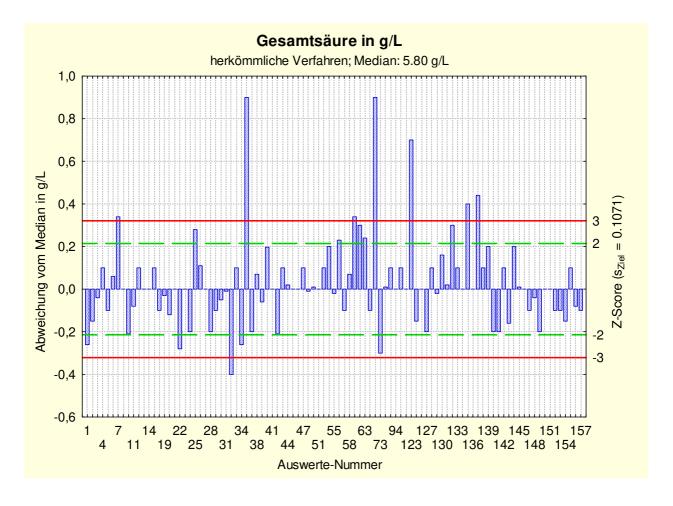
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
100	Lud/Ed	F 00	0.000			
122 123	LwK 5.1	5,80	0,000	0,00	0,00	/** \
123	LwK 5.1	6,50	0,700	2,78	6,53	(**)
	LwK 5.3	5,80	0,000	0,00	0,00	
125	LwK 5.1	5,65	-0,150	-0,60	-1,40	
126	LwK 5.2.1	5,80	0,000	0,00	0,00	
127	LwK 5.1	5,60	-0,200	-0,79	-1,87	
128	LwK 5.2.1	5,90	0,100	0,40	0,93	
129	LwK 5.2.1	5,78	-0,020	-0,08	-0,19	
130	LwK 5.1	5,96	0,160	0,64	1,49	
131	LwK 5.1	5,82	0,020	0,08	0,19	
132	LwK 5.1	6,10	0,300	1,19	2,80	
133	LwK 5.1	5,90	0,100	0,40	0,93	
134	LwK 5.1	5,80	0,000	0,00	0,00	
135	LwK 5.1	6,20	0,400	1,59	3,73	
136	LwK 5.1	5,80	0,000	0,00	0,00	
137	LwK 5.1	6,24	0,440	1,75	4,11	
138	LwK 5.2.1	5,90	0,100	0,40	0,93	
139	LwK 5.2.1	6,00	0,200	0,79	1,87	
140	LwK 5.1	5,60	-0,200	-0,79	-1,87	
141	LwK 5.1	5,60	-0,200	-0,79	-1,87	
142	LwK 5.1	5,90	0,100	0,40	0,93	
143	LwK 5.1	5,64	-0,160	-0,64	-1,49	
144	LwK 5.2.1	6,00	0,200	0,79	1,87	
145	LwK 5.2.1	5,81	0,010	0,04	0,09	
146	LwK 5.1	5,80	0,000	0,00	0,00	
147	LwK 5.1	5,70	-0,100	-0,40	-0,93	
148	LwK 5.1	5,76	-0,040	-0,16	-0,37	
149	LwK 5.1	5,60	-0,200	-0,79	-1,87	
150	LwK 5.2.1	5,80	0,000	0,00	0,00	
151	LwK 5.1	5,80	0,000	0,00	0,00	
152	LwK 5.1	5,70	-0,100	-0,40	-0,93	
153	LwK 5.1	5,70	-0,100	-0,40	-0,93	
154	LwK 5.2.1	5,65	-0,150	-0,60	-1,40	
155	LwK 5.1	5,90	0,100	0,40	0,93	
156	LwK 5.1	5,72	-0,080	-0,32	-0,75	
157	LwK 5.1	5,70	-0,100	-0,40	-0,93	

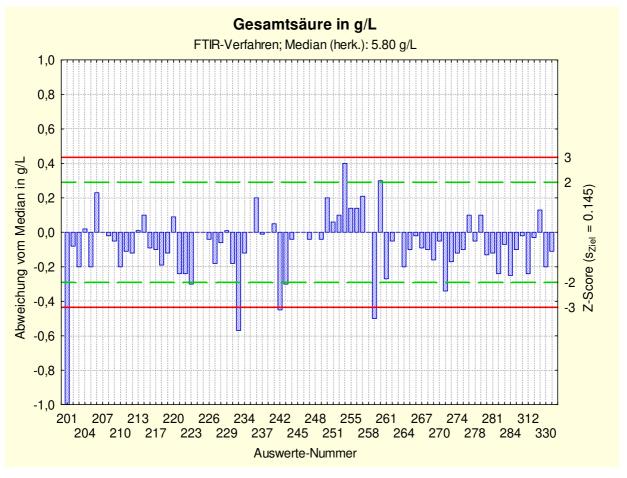
Der mit (**) gekennzeichnete Wert wurde bei der wiederholten Berechnung nicht berücksichtigt.

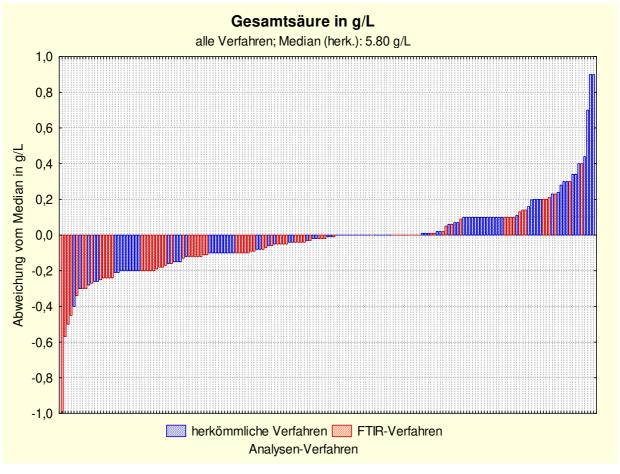
6.13.1 FTIR-Laborergebnisse

Auswerte-	Nr. Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
201	LwK 5.3	3,18	-2,620	-10,40	-18,07	(***)
202	LwK 5.3	5,72	-0,080	-0,32	-0,55	,
203	LwK 5.3	5,60	-0,200	-0,79	-1,38	
204	LwK 5.3	5,82	0,020	0,08	0,14	
205	LwK 5.3	5,60	-0,200	-0,79	-1,38	
206	LwK 5.3	6,03	0,230	0,91	1,59	
207	LwK 5.3	5,80	0,000	0,00	0,00	
208	LwK 5.3	5,78	-0,020	-0,08	-0,14	
209	LwK 5.3	5,75	-0,050	-0,20	-0,34	
210	LwK 5.3	5,60	-0,200	-0,79	-1,38	
211	LwK 5.3	5,69	-0,110	-0,44	-0,76	
212	LwK 5.3	5,68	-0,120	-0,48	-0,83	
213	LwK 5.3	5,81	0,010	0,04	0,07	
215	LwK 5.3	5,90	0,100	0,40	0,69	
216	LwK 5.3	5,71	-0,090	-0,36	-0,62	
217	LwK 5.3	5,70	-0,100	-0,40	-0,69	
218	LwK 5.3	5,61	-0,190	-0,75	-1,31	
219	LwK 5.3	5,68	-0,120	-0,48	-0,83	
220	LwK 5.3	5,89	0,090	0,36	0,62	
221	LwK 5.3	5,56	-0,240	-0,95	-1,66	
222	LwK 5.3	5,56	-0,240	-0,95	-1,66	

^(***) Der markierte Wert weicht um mehr als 5 Z-Score-Einheiten vom maßgeblichen Median ab. Offensichtlich wurde irrtümlich das Messergebnis für den pH-Wert eingetragen.


Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
223	LwK 5.3	5,50	-0,300	-1,19	-2,07	
224	LwK 5.3	5,80	0,000	0,00	0,00	
225	LwK 5.3	5,80	0,000	0,00	0,00	
226	LwK 5.3	5,76	-0,040	-0,16	-0,28	
227	LwK 5.3	5,62	-0,180	-0,71	-1,24	
228	LwK 5.3	5,74	-0,060	-0,24	-0,41	
229 230	LwK 5.3 LwK 5.3	5,81 5,62	0,010 -0,180	0,04 -0,71	0,07 -1,24	
232	LwK 5.3	5,23	-0,180	-2,26	-3,93	
234	LwK 5.3	5,68	-0,120	-0,48	-0,83	
235	LwK 5.3	5,80	0,000	0,00	0,00	
236	LwK 5.3	6,00	0,200	0,79	1,38	
237	LwK 5.3	5,79	-0,010	-0,04	-0,07	
240	LwK 5.3	5,80	0,000	0,00	0,00	
241	LwK 5.3	5,85	0,050	0,20	0,34	
242	LwK 5.3	5,35	-0,450	-1,79	-3,10	
243	LwK 5.3	5,50	-0,300	-1,19	-2,07	
244	LwK 5.3	5,76	-0,040	-0,16	-0,28	
245	LwK 5.3	5,80	0,000	0,00	0,00	
246	LwK 5.3	5,80	0,000	0,00	0,00	
247	LwK 5.3	5,76	-0,040	-0,16	-0,28	
248 249	LwK 5.3	5,80 5.76	0,000	0,00	0,00 -0,28	
249 250	LwK 5.3 LwK 5.3	5,76 6,00	-0,040 0,200	-0,16 0,79	-0,26 1,38	
250 251	LwK 5.3	5,86	0,200	0,79	0,41	
253	LwK 5.3	5,90	0,100	0,40	0,69	
254	LwK 5.3	6,20	0,400	1,59	2,76	
255	LwK 5.3	5,94	0,140	0,56	0,97	
256	LwK 5.3	5,94	0,140	0,56	0,97	
257	LwK 5.3	6,01	0,210	0,83	1,45	
258	LwK 5.3	5,80	0,000	0,00	0,00	
259	LwK 5.3	5,30	-0,500	-1,99	-3,45	
260	LwK 5.3	6,10	0,300	1,19	2,07	
261	LwK 5.3	5,53	-0,270	-1,07	-1,86	
262	LwK 5.3	5,75	-0,050	-0,20	-0,34	
263 264	LwK 5.3 LwK 5.3	5,80 5,60	0,000 -0,200	0,00 -0,79	0,00 -1,38	
265	LwK 5.3	5,70	-0,200	-0,79	-0,69	
266	LwK 5.3	5,78	-0,020	-0,40	-0,03	
267	LwK 5.3	5,71	-0,090	-0,36	-0,62	
268	LwK 5.3	5,70	-0,100	-0,40	-0,69	
269	LwK 5.3	5,64	-0,160	-0,64	-1,10	
270	LwK 5.3	5,75	-0,050	-0,20	-0,34	
271	LwK 5.3	5,46	-0,340	-1,35	-2,34	
273	LwK 5.3	5,63	-0,170	-0,68	-1,17	
274	LwK 5.3	5,68	-0,120	-0,48	-0,83	
275	LwK 5.3	5,70	-0,100	-0,40	-0,69	
276	LwK 5.3	5,70	-0,100	-0,40	-0,69	
277	LwK 5.3	5,90	0,100	0,40	0,69	
278	LwK 5.3	5,75	-0,050 0.100	-0,20	-0,34	
279 280	LwK 5.3 LwK 5.3	5,90 5,67	0,100 -0,130	0,40 -0,52	0,69 -0,90	
281	LwK 5.3 LwK 5.3	5,68	-0,130 -0,120	-0,52 -0,48	-0,90	
282	LwK 5.3	5,56	-0,120	-0,45	-1,66	
283	LwK 5.3	5,73	-0,070	-0,28	-0,48	
284	LwK 5.3	5,55	-0,250	-0,99	-1,72	
285	LwK 5.3	5,70	-0,100	-0,40	-0,69	
286	LwK 5.3	5,78	-0,020	-0,08	-0,14	
287	LwK 5.3	5,60	-0,200	-0,79	-1,38	
312	LwK 5.3	5,56	-0,240	-0,95	-1,66	
321	LwK 5.3	5,77	-0,030	-0,12	-0,21	
328	LwK 5.3	5,93	0,130	0,52	0,90	
330	LwK 5.3	5,60	-0,200	-0,79	-1,38	
337	LwK 5.3	5,69	-0,110	-0,44	-0,76	


6.13.2 Deskriptive Ergebnisse


Ergebnisse für Gesamtsäure [g/L]	alle Daten	ber. Daten
Gültige Werte	97	94
Minimalwert	5,40	5,40
Mittelwert	5,828	5,802
Median	5,800	5,800
Maximalwert	6,70	6,24
Standardabweichung (s _L)	0,214	0,159
Standardfehler des Mittelwertes (u _M)	0,022	0,016
Zielstandardabweichung n. Horwitz (s _H)	0,252	0,252
Zielstandardabweichung, experimentell (sexp herk.)	0,107	0,107
Zielstandardabweichung, experimentell (sü FTIR)	0,145	0,145
Horrat-Wert (s∟/s _H)	0,85	0,63
Quotient (s _L /s _{exp herk.})	2,00	1,49
Quotient (s _L /s _{Ü FTIR})	1,48	1,10
Quotient (u _M /s _H)	0,09	0,07
Quotient (u _M /s _{exp herk.})	0,20	0,15
Quotient (u _M /sü _{FTIR})	0,15	0,11

6.13.3 Angaben zu den Analyseverfahren

Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
LwK 5.1	Potentiometrische Bestimmung n. AVV	64	5,800	0,173
LwK 5.2.1	Potentiometrische Bestimmung;			
	OIV-MA-AS-313-01, Nr. 5.2	32	5,818	0,138
LwK 5.2.2	Endpunktbestimmung mit Indikator;			
	OIV-MA-AS-313-01, Nr. 5.3	1	5,900	
	alle herkömmlichen Verfahren	97	5,806	0,161
LwK 5.3	Fourier-Transform-Infrarotspektroskopie	84	5,734	0,140

6.14 Weinsäure [g/L]

6.14.1 Herkömmliche Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Hinweis
01	HPLC	2,32	0,200	1,87	
02	HPLC	1,93	-0,190	-1,77	
03	HPLC	2,06	-0,060	-0,56	
04	photometr.	1,87	-0,250	-2,33	
05	photometr.	2,10	-0,020	-0,19	
06	HPLC	1,94	-0,181	-1,69	
09	photometr., autom.	1,92	-0,200	-1,87	
10	photometr.	2,16	0,040	0,37	
13	photometr., autom.	2,26	0,140	1,31	
16	photometr., autom.	2,20	0,080	0,75	
19	photometr., autom.	2,27	0,150	1,40	
22	HPLC	2,16	0,040	0,37	
23	HPLC	2,12	0,000	0,00	
25	HPLC	2,09	-0,034	-0,32	
27	HPLC	2,20	0,080	0,75	
30	photometr., autom.	2,32	0,200	1,87	
31	photometr.	2,45	0,330	3,08	
38	photometr., autom.	2,01	-0,110	-1,03	
39	IC	2,05	-0,070	-0,65	
40	photometr., autom.	2,18	0,060	0,56	
41	photometr., autom.	2,01	-0,110	-1,03	
44	photometr., autom.	2,26	0,140	1,31	
45	photometr., autom.	2,28	0,160	1,49	
47	photometr., autom.	2,30	0,180	1,68	
49	photometr., autom.	2,22	0,100	0,93	
55	photometr., autom.	2,27	0,150	1,40	
56	photometr., autom.	2,26	0,140	1,31	
57	photometr., autom.	2,03	-0,090	-0,84	
58	HPLC	2,12	0,000	0,00	
60	photometr., autom.	2,10	-0,020	-0,19	
68	photometr., autom.	2,11	-0,010	-0,09	
78	photometr.	1,98	-0,140	-1,31	
97	HPLC	2,04	-0,080	-0,75	
102	photometr., autom.	1,97	-0,150	-1,40	
111	NMR	1,64	-0,485	-4,52	
112	NMR	1,86	-0,259	-2,42	
113	NMR	1,84	-0,280	-2,61	
114 115	NMR NMR	1,83	-0,289 0,060	-2,70 0.56	
116	NMR	2,06 1,91	-0,060 0.212	-0,56	
110	ININIU	1,31	-0,212	-1,98	

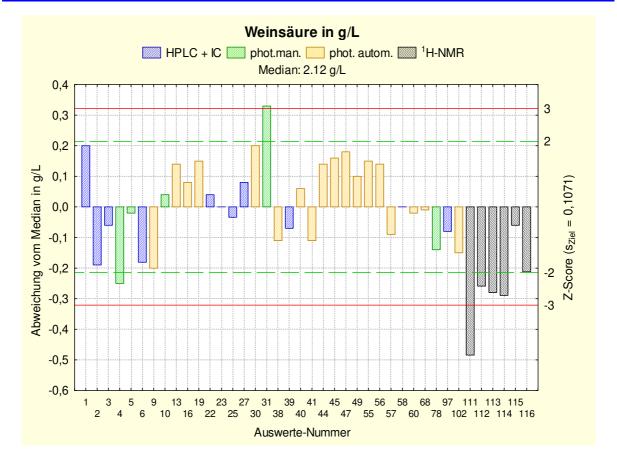
6.14.2 FTIR-Laborergebnisse

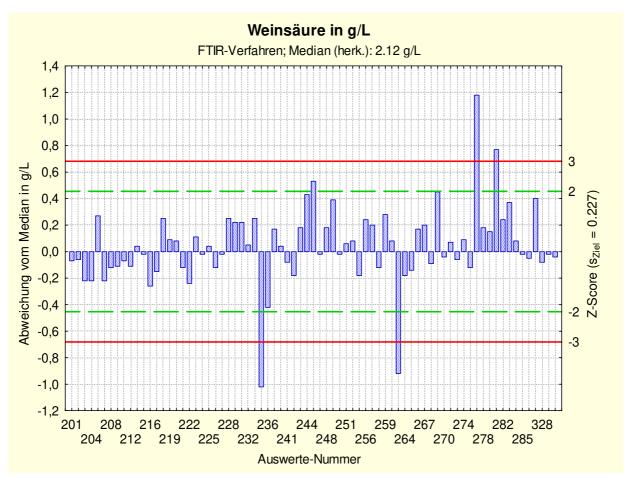
Stand: 02.03.2021

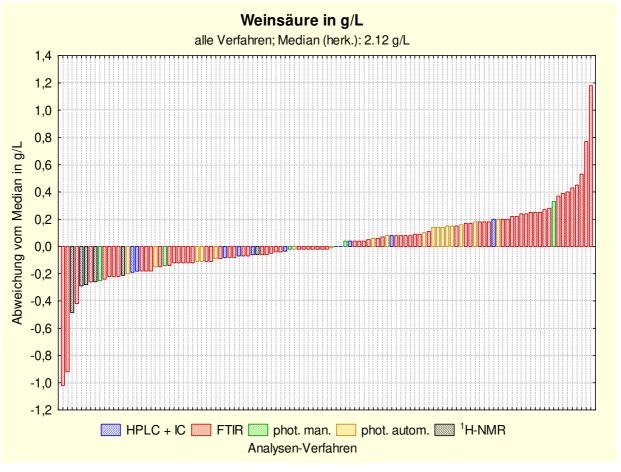
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
201	FTIR	2,05	-0,070	-0,65	-0,31	
202	FTIR	2,06	-0,060	-0,56	-0,26	
203	FTIR	1,90	-0,220	-2,05	-0,97	
204	FTIR	1,90	-0,220	-2,05	-0,97	
205	FTIR	2,39	0,270	2,52	1,19	
207	FTIR	1,90	-0,220	-2,05	-0,97	
208	FTIR	2,00	-0,120	-1,12	-0,53	
210	FTIR	2,01	-0,110	-1,03	-0,48	
211	FTIR	2,05	-0,070	-0,65	-0,31	
212	FTIR	2,01	-0,110	-1,03	-0,48	
213	FTIR	2,16	0,040	0,37	0,18	
215	FTIR	2,10	-0,020	-0,19	-0,09	
216	FTIR	1,86	-0,260	-2,43	-1,15	
217	FTIR	1,97	-0,150	-1,40	-0,66	
218	FTIR	2,37	0,250	2,33	1,10	
219	FTIR	2,21	0,090	0,84	0,40	

Probe FT20P01: Weinsäure

	<u> </u>					
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
220	FTIR	2,20	0,080	0,75	0,35	
221	FTIR	2,00	-0,120	-1,12	-0,53	
222	FTIR	1,88	-0,240	-2,24	-1,06	
223	FTIR	2,23	0,110	1,03	0,48	
224	FTIR	2,23	-0,020	-0,19	-0,09	
225	FTIR	2,10		0,19	0,18	
			0,040			
226	FTIR FTIR	2,00	-0,120	-1,12	-0,53	
227 228	FTIR	2,10 2,37	-0,020	-0,19	-0,09	
			0,250	2,33	1,10	
229	FTIR	2,34	0,220	2,05	0,97	
230	FTIR	2,34	0,220	2,05	0,97	
232	FTIR	2,17	0,050	0,47	0,22	
234	FTIR	2,37	0,250	2,33	1,10	
235	FTIR	1,10	-1,020	-9,52	-4,49	
236	FTIR	1,70	-0,420	-3,92	-1,85	
237	FTIR	2,29	0,170	1,59	0,75	
240	FTIR	2,16	0,040	0,37	0,18	
241	FTIR	2,04	-0,080	-0,75	-0,35	
242	FTIR	1,94	-0,180	-1,68	-0,79	
243	FTIR	2,30	0,180	1,68	0,79	
244	FTIR	2,55	0,430	4,01	1,89	
245	FTIR	2,65	0,530	4,95	2,33	
246	FTIR	2,10	-0,020	-0,19	-0,09	
248	FTIR	2,30	0,180	1,68	0,79	
249	FTIR	2,51	0,390	3,64	1,72	
250	FTIR	2,10	-0,020	-0,19	-0,09	
251	FTIR	2,18	0,060	0,56	0,26	
253	FTIR	2,20	0,080	0,75	0,35	
255	FTIR	1,94	-0,180	-1,68	-0,79	
256	FTIR	2,36	0,240	2,24	1,06	
257	FTIR	2,32	0,200	1,87	0,88	
258	FTIR	2,00	-0,120	-1,12	-0,53	
259	FTIR	2,40	0,280	2,61	1,23	
260	FTIR	2,20	0,080	0,75	0,35	
263	FTIR	1,20	-0,920	-8,59	-4,05	
264	FTIR	1,94	-0,180	-1,68	-0,79	
265	FTIR	1,98	-0,140	-1,31	-0,62	
266	FTIR	2,29	0,170	1,59	0,75	
267	FTIR	2,32	0,200	1,87	0,88	
268	FTIR	2,03	-0,090	-0,84	-0,40	
269	FTIR	2,57	0,450	4,20	1,98	
270	FTIR	2,08	-0,040	-0,37	-0,18	
271	FTIR	2,19	0,070	0,65	0,31	
273	FTIR	2,06	-0,060	-0,56	-0,26	
274	FTIR	2,21	0,090	0,84	0,40	
275	FTIR	2,30	0,180	1,68	0,79	
276	FTIR	2,00	-0,120	-1,12	-0,53	
277	FTIR	3,30	1,180	11,02	5,20	(*)
278	FTIR	2,30	0,180	1,68	0,79	\ /
280	FTIR	2,27	0,150	1,40	0,75	
281	FTIR	2,89	0,770	7,19	3,39	
282	FTIR	2,36	0,240	2,24	1,06	
283	FTIR	2,49	0,240	3,45	1,63	
284	FTIR	2,49	0,080	0,75	0,35	
285	FTIR	2,20	-0,020	-0,19	-0,09	
286	FTIR	2,10	-0,020	-0,19	-0,09	
266 321	FTIR	2,07 2,52	0,400	-0,47 3,73	-0,22 1,76	
328	FTIR	2,04	-0,080	-0,75 0.10	-0,35	
330	FTIR	2,10	-0,020	-0,19	-0,09	
337	FTIR	2,08	-0,040	-0,37	-0,18	


^(*) Der markierte Wert weicht um mehr als 50 % vom Median der herkömmlichen Werte ab. Wahrscheinlich liegt ein Übertragungsfehler vor.


6.14.3 Deskriptive Ergebnisse


Ergebnisse für Weinsäure [g/L]	HPLC + IC alle Daten	herk. Verf. alle Daten
Gültige Werte	11	34
Minimalwert	1,93	1,87
Mittelwert	2,093	2,134
Median	2,086	2,120
Maximalwert	2,32	2,45
Standardabweichung (s _L)	0,112	0,139
Standardfehler des Mittelwertes (u _M)	0,034	0,024
Zielstandardabweichung n. Horwitz (s _H)	0,106	0,107
Zielstandardabweichung, experimentell (sexp herk.)		
Zielstandardabweichung, experimentell (sü FTIR)	0,227	0,227
Horrat-Wert (s∟/s _H)	1,06	1,30
Quotient (s _L /s _{exp herk.})		
Quotient (s _L /s _{Ü FTIR})	0,49	0,61
Quotient (u _M /s _H)	0,32	0,22
Quotient (u _M /s _{exp herk.})		
Quotient (u _M /sü FTIR)	0,15	0,10

6.14.4 Angaben zu den Analyseverfahren

	-			
Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
HPLC	Library and the similar in the single property and a single singl	10		
HPLC	Hochdruckflüssigkeitschromatographie	10	2,095	0,118
IC	Ionenchromatographie (IC)	1	2,050	
	HPLC + IC	11	2,087	0,109
photometr.	photometrisch nach Rebelein	5	2,105	0,234
phot. autom.	photometrisch, automatisiert	18	2,170	0,136
	alle photometrischen Verfahren	23	2,154	0,157
	alle herkömmlichen Verfahren	34	2,132	0,149
FTIR	Fourier-Transform-Infrarotspektroskopie	75	2,160	0,211
NMR	¹ H-Kernresonanzspektroskopie	6	1,854	0,152

6.15 Flüchtige Säure [g/L]

6.15.1 Herkömmliche Laborergebnisse

Bewertungsbasis: Werte ohne SO_2 -Einfluss, experimentelle Zielstandardabweichung, $Z_{Max} = 4,5$

Probe FT20P01: Flüchtige Säure

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score	Z-Score	Hinweis
				Horwitz	exper.	
01	Halbmikro SO2 unber.	0,330	0,0100	0,47	0,35	
03	Gerhardt SO2 korr.	0,365	0,0450	2,09	1,57	
04	OIV SO2-korr.	0,286	-0,0340	-1,58	-1,19	
05	Gerhardt SO2 korr.	0,316	-0,0040	-0,19	-0,14	
09	OIV SO2-korr.	0,329	0,0090	0,42	0,32	
10	Halbmikro SO2 unber.	0,350	0,0300	1,40	1,05	
11	OIV SO2-korr.	0,139	-0,1810	-8,42	-6,33	(*)
12	Gerhardt SO2 ausg.	0,230	-0,0900	-4,19	-3,15	()
14	Gerhardt SO2 korr.	0,378	0,0578	2,69	2,02	
22	Halbmikro SO2 unber.	0,320	0,0000	0,00	0,00	
26	Gerhardt SO2 korr.	0,357	0,0370	1,72	1,29	
28	Halbmikro SO2 ausg.	0,279	-0,0410	-1,91	-1,43	
29	Wädenswil SO2 korr.	0,230	-0,0900	-4,19	-3,15	
30	Gerhardt SO2 korr.	0,320	0,0000	0,00	0,00	
31	Gerhardt SO2 korr.	0,330	0,0100	0,47	0,35	
32	Halbmikro SO2 unber.	0,500	0,1800	8,38	6,30	(*)
37	Halbmikro SO2 korr.	0,370	0,0500	2,33	1,75	()
38	Gerhardt SO2 korr.	0,227	-0,0930	-4,33	-3,25	
39	Gerhardt SO2 korr.	0,320	0,0000	0,00	0,00	
40	Gerhardt SO2 ausg.	0,285	-0,0350	-1,63	-1,23	
41	Gerhardt SO2 ausg.	0,310	-0,0100	-0,47	-0,35	
43	Gerhardt SO2 korr.	0,180	-0,1400	-6,52	-4,90	(**)
44	Gerhardt SO2 korr.	0,320	0,0000	0,00	0,00	()
46	Halbmikro SO2 korr.	0,400	0,0800	3,72	2,80	
55	Rentschler mod. korr.	0,247	-0,0730	-3,40	-2,56	
56	Büchi SO2 korr.	0,335	0,0151	0,70	0,53	
57	Gerhardt SO2 korr.	0,245	-0,0750	-3,49	-2,63	
59	Wädenswil SO2 korr.	0,180	-0,1400	-6,52	-4,90	(**)
63	Halbmikro SO2 unber.	0,510	0,1900	8,84	6,65	(*)
65	Wädenswil SO2 korr.	0,384	0,0640	2,98	2,24	` '
68	Gerhardt SO2 korr.	0,380	0,0600	2,79	2,10	
72	Wädenswil SO2 unber.	0,400	0,0800	3,72	2,80	
78	Halbmikro SO2 korr.	0,160	-0,1600	-7,45	-5,60	(**)
79	Halbmikro SO2 unber.	0,210	-0,1100	-5,12	-3,85	` ,
80	Wädenswil SO2 korr.	0,240	-0,0800	-3,72	-2,80	
110	Gerhardt SO2 unber.	0,420	0,100	4,65	3,50	

Die mit (*) markierten Werte weichen um mehr als 50 % vom Median der SO_2 -korrigierten Werte ab. Die mit (**) markierten Werte wurden bei der wiederholten Berechnung nicht berücksichtigt.

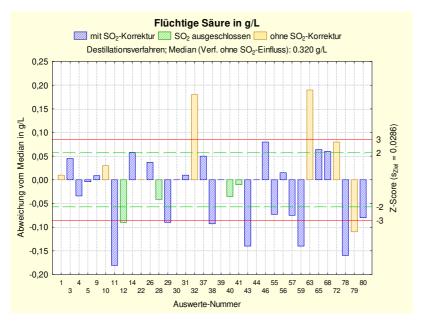
6.15.2 FTIR-Laborergebnisse

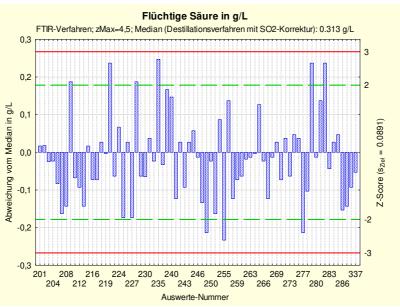
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
					<u> </u>	
201	FTIR	0,330	0,0170	0,81	0,19	
202	FTIR	0,331	0,0180	0,85	0,20	
203	FTIR	0,288	-0,0250	-1,19	-0,28	
204	FTIR	0,290	-0,0230	-1,09	-0,26	
205	FTIR	0,230	-0,0830	-3,94	-0,93	
207	FTIR	0,150	-0,1630	-7,73	-1,83	
208	FTIR	0,170	-0,1430	-6,78	-1,60	
210	FTIR	0,500	0,1870	8,87	2,10	
211	FTIR	0,245	-0,0680	-3,22	-0,76	
212	FTIR	0,220	-0,0930	-4,41	-1,04	
213	FTIR	0,170	-0,1430	-6,78	-1,60	
215	FTIR	0,330	0.0170	0.81	0,19	
216	FTIR	0,240	-0,0730	-3,46	-0,82	
217	FTIR	0,240	-0,0730	-3,46	-0,82	
218	FTIR	0,340	0,0270	1,28	0,30	
219	FTIR	0,310	-0,0030	-0,14	-0,03	
220	FTIR	0,550	0,2370	11,24	2,66	

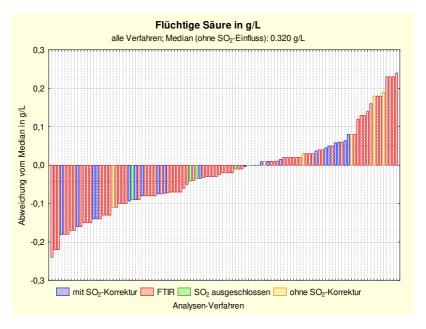
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
222	FTIR	0,250	-0,0630	-2,99	-0,71	
224	FTIR	0,230	0,0670	3,18	0,75	
225	FTIR	0,140	-0,1730	-8,20	-1,94	
226	FTIR	0,340	0,0270	1,28	0,30	
227	FTIR	0,140	-0,1730	-8,20	-1,94	
228	FTIR		0,1870	8,87	2,10	
229	FTIR	0,500 0,250	-0,0630		-0,71	
230	FTIR	0,230		-2,99		
232	FTIR	0,240	-0,0650	-3,08 1.75	-0,73	
		0,350	0,0370	1,75	0,42	
234	FTIR	0,290	-0,0230	-1,09	-0,26	
235	FTIR	0,560	0,2470	11,71	2,77	
236	FTIR	0,280	-0,0330	-1,56	-0,37	
237	FTIR	0,480	0,1670	7,92	1,87	
240	FTIR	0,460	0,1470	6,97	1,65	
241	FTIR	0,190	-0,1230	-5,83	-1,38	
242	FTIR	0,340	0,0270	1,28	0,30	
243	FTIR	0,220	-0,0930	-4,41	-1,04	
244	FTIR	0,340	0,0270	1,28	0,30	
245	FTIR	0,370	0,0570	2,70	0,64	
246	FTIR	0,300	-0,0130	-0,62	-0,15	
248	FTIR	0,180	-0,1330	-6,31	-1,49	
249	FTIR	0,100	-0,2130	-10,10	-2,39	
250	FTIR	0,290	-0,0230	-1,09	-0,26	
251	FTIR	0,150	-0,1630	-7,73	-1,83	
253	FTIR	0,400	0,0870	4,13	0,98	
255	FTIR	0,080	-0,2330	-11,05	-2,62	
256	FTIR	0,450	0,1370	6,50	1,54	
257	FTIR	0,190	-0,1230	-5,83	-1,38	
259	FTIR	0,240	-0,0730	-3,46	-0,82	
260	FTIR	0,250	-0,0630	-2,99	-0,71	
262	FTIR	0,295	-0,0180	-0,85	-0,20	
263	FTIR	0,300	-0,0130	-0,62	-0,15	
264	FTIR	0,310	-0,0030	-0,02	-0,13	
265	FTIR	0,310	0,1270	6,02	1,43	
266	FTIR	0,440	-0,0230	-1,09	-0,26	
		0,290			-1,38	
267 268	FTIR		-0,1230	-5,83		
	FTIR	0,300	-0,0130	-0,62	-0,15	
269	FTIR	0,340	0,0270	1,28	0,30	
270	FTIR	0,240	-0,0730	-3,46	-0,82	
271	FTIR	0,350	0,0370	1,75	0,42	
273	FTIR	0,250	-0,0630	-2,99	-0,71	
274	FTIR	0,360	0,0470	2,23	0,53	
275	FTIR	0,340	0,0270	1,28	0,30	
276	FTIR	0,350	0,0370	1,75	0,42	
277	FTIR	0,100	-0,2130	-10,10	-2,39	
278	FTIR	0,210	-0,1030	-4,88	-1,16	
279	FTIR	0,550	0,2370	11,24	2,66	
280	FTIR	0,300	-0,0130	-0,62	-0,15	
281	FTIR	0,450	0,1370	6,50	1,54	
282	FTIR	0,550	0,2370	11,24	2,66	
283	FTIR	0,270	-0,0430	-2,04	-0,48	
284	FTIR	0,340	0,0270	1,28	0,30	
285	FTIR	0,360	0,0470	2,23	0,53	
286	FTIR	0,160	-0,1530	-7,26	-1,72	
328	FTIR	0,170	-0,1430	-6,78	-1,60	
330	FTIR	0,220	-0,0930	-4,41	-1,04	
337	FTIR	0,260	-0,0530	-2,51	-0,59	

6.15.3 Deskriptive Ergebnisse

Ergebnisse für Flüchtige Säure in g/L	alle Daten	ber. Daten
Destillationsergebnisse ohne SO ₂ -Einfluss		
Gültige Werte	27	24
Minimalwert	0,160	0,227
Mittelwert	0,2964	0,3118
Median	0,3160	0,3200
Maximalwert	0,400	0,400
Standardabweichung (s _L)	0,068	0,055
Standardfehler des Mittelwertes (u _M)	0,013	0,011
Zielstandardabweichung n. Horwitz (s _H)	0,021	0,021
Zielstandardabweichung, experimentell (sexp herk.)	0,029	0,029
Zielstandardabweichung, experimentell (sü FTIR)	0,089	0,089
Horrat-Wert (s∟/s _H)	3,19	2,54
Quotient (s _L /s _{exp herk.})	2,38	1,91
Quotient (s _L /s _{Ü FTIR})	0,76	0,62
Quotient (u _M /s _H)	0,61	0,52
Quotient (u _M /s _{exp herk.})	0,46	0,39
Quotient (u _M /s _{Ü FTIR})	0,15	0,12


Die Bewertung der Laborergebnisse erfolgte mit der experimentellen Zielstandardabweichung und $z_{Max} = 4,5$.


6.15.4 Angaben zu den Analyseverfahren


Stand: 02.03.2021

Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
Halbmikro	Halbmikrodestillation n. AVV,			
SO ₂ unber.	SO ₂ -Einfluss nicht berücksichtigt	6	0,369	0,1300
SO ₂ ausg.	SO ₂ -Einfl. ausgeschlossen, z.B. mit H ₂ O ₂	1	0,279	
SO ₂ korr.	SO ₂ -Einfluss korrigiert	3	0,319	0,1314
Wädenswil	Wädenswil-Verfahren,			
SO ₂ unber.	SO ₂ -Einfluss nicht berücksichtigt	1	0,400	
SO ₂ korr.	SO ₂ -Einfluss korrigiert	4	0,254	0,0896
Gerhardt	Destillationsapparat Gerhardt,			
SO ₂ ausg.	SO ₂ -Einfl. ausgeschlossen, z.B. mit H ₂ O ₂	3	0,275	0,0464
SO ₂ korr.	SO ₂ -Einfluss korrigiert	12	0,315	0,0630
OIV SO ₂ -korr.	OIV-MA-AS-313-02 einschl. SO ₂ -Korrektur	3	0,254	0,1074
Rentschler mod.	Verfahren n. Rentschler mod. Dr. Nilles,			
SO ₂ ausg.	SO ₂ -Einfluss korrigiert	1	0,247	
Büchi SO ₂ korr.	Destillationsapparat Büchi,			
	SO ₂ -Einfluss korrigiert	1	0,335	
	Destillationsverfahren mit SO ₂ -Korrektur	28	0,293	0,0789
FTIR	Fourier-Transform-Infrarotspektroskopie	73	0,291	0,1087

Probe FT20P01: Flüchtige Säure

6.16 Acetat (als Essigsäure) [g/L]

6.16.1 Herkömmliche Laborergebnisse

Bewertungsbasis: enzymatisch, automatisiert

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Hinweis
05	enzymat. autom.	0,158	-0,032	-2,32	
10	enzymat. autom.	0,200	0,010	0,72	
13	enzymat. autom.	0,240	0,050	3,62	
15	enzymat. autom.	0,240	0,050	3,62	
16	enzymat. autom.	0,160	-0,030	-2,17	
19	enzymat. autom.	0,210	0,020	1,45	
26	enzymat. autom.	0,200	0,010	0,72	
27	enzymat. autom.	0,180	-0,010	-0,72	
30	enzymat. autom.	0,280	0,090	6,52	(**)
38	enzymat. autom.	0,202	0,012	0,87	
41	enzymat. autom.	0,250	0,060	4,35	
44	enzymat. autom.	0,180	-0,010	-0,72	
45	enzymat. autom.	0,270	0,080	5,80	(**)
46	enzymat. autom.	0,190	0,000	0,00	
47	enzymat. autom.	0,150	-0,040	-2,90	
49	enzymat. autom.	0,220	0,030	2,17	
52	enzymat. autom.	0,240	0,050	3,62	
54	enzymat. autom.	0,220	0,030	2,17	
55	enzymat. autom.	0,172	-0,018	-1,30	
57	enzymat. autom.	0,190	0,000	0,00	
58	enzymat. autom.	0,180	-0,010	-0,72	
60	enzymat. autom.	0,220	0,030	2,17	
68	enzymat. autom.	0,180	-0,010	-0,72	
78	enzymat. autom.	0,160	-0,030	-2,17	
102	enzymat. autom.	0,190	0,000	0,00	

^(**) Die markierten Werte wurden bei der wiederholten Berechnung mit $Z_{\text{Max}} = 4,5$ nicht berücksichtigt.

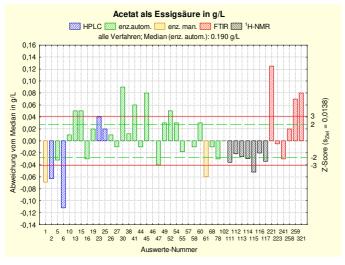
6.16.2 Weitere herkömmliche und FTIR-Laborergebnisse

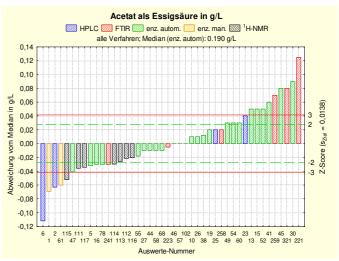
Stand: 02.03.2021

Bewertungsbasis: enzymatisch, manuell und ¹H-Kernresonanzspektroskopie

			•	•	
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Hinweis
01	enzymat. Hand	0,121	-0,035	-2,99	
02	HPLC	0,127	-0,029	-2,47	
03	HPLC	< 0,3	-,	,	
06	HPLC	0,078	-0,078	-6,67	(**)
23	HPLC	0,230	0,074	6,36	(**)
25	HPLC	0,210	0,054	4,65	
61	enzymat. Hand	0,130	-0,026	-2,21	
111	NMR	0,154	-0,001	-0,12	
112	NMR	0,169	0,013	1,09	
113	NMR	0,164	0,008	0,70	
114	NMR	0,160	0,005	0,39	
115	NMR	0,138	-0,018	-1,53	
116	NMR	0,170	0,014	1,19	
117	NMR	0,156	0,000	0,00	
221	FTIR	0,315	0,159	13,65	(*)
223	FTIR	0,185	0,029	2,50	
241	FTIR	0,160	0,004	0,36	
258	FTIR	0,210	0,054	4,65	
259	FTIR	0,260	0,104	8,93	(*)
321	FTIR	0,270	0,114	9,79	(*)

Die mit (*)markierten Werte weichen um mehr als 50 % vom maßgeblichen Median ab.


Die mit (***) markierten Werte weichen um mehr als 5 Z-Score-Einheiten vom maßgeblichen Median ab.


6.16.3 Deskriptive Ergebnisse

Ergebnisse für Acetat (als Essigsäure) [g/L]	en	enzymat. automat.			
	alle Daten	$z_{Max} = 5.0$	z_{Max} 0 4,5	alle Daten	
Gültige Werte	25	24	23	9	
Minimalwert	0,150	0,150	0,150	0,121	
Mittelwert	0,203	0,200	0,197	0,151	
Median	0,200	0,195	0,190	0,156	
Maximalwert	0,280	0,270	0,250	0,170	
Standardabweichung (s _L)	0,035	0,032	0,029	0,018	
Standardfehler des Mittelwertes (u _M)	0,007	0,007	0,006	0,006	
Zielstandardabweichung n. Horwitz (s _H)	0,014	0,014	0,014	0,012	
Zielstandardabweichung, experimentell (sexp herk.)					
Zielstandardabweichung, experimentell (sü FTIR)	2,44	2,27	2,10	1,50	
Horrat-Wert (s _L /s _H)					
Quotient (u _M /s _H)	0,49	0,46	0,44	0,50	

6.16.4 Angaben zu den Analyseverfahren

Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
HPLC	Hochleistungsflüssigkeitschromatographie	4	0,1613	0,0807
enzymat. autom.	enzymatisch, automatisiert	25	0,2017	0,0357
enzymat. Hand	enzymatisch, manuell	2	0,1255	0,0072
NMR	¹ H-Kernresonanzspektroskopie (¹ H-NMR)	7	0,1596	0,0100
	enzymatisch, manuell + ¹ H-NMR	9	0,1514	0,0196
FTIR	Fourier-Transform-Infrarotspektroskopie	6	0,2333	0,0661

6.17 Gesamte Äpfelsäure und L-Äpfelsäure [g/L]

6.17.1 Herkömmliche Laborergebnisse Gesamte Äpfelsäure

Bewertungsbasis: Verfahren außer NMR

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
01	enzymat. Hand	1,60	0,000	0,00	0,00	
02	HPLC	1,95	0,347	4,11	5,92	(**)
03	HPLC	1,56	-0,038	-0,45	-0,65	
06	HPLC	1,35	-0,253	-3,00	-4,32	
22	HPLC	1,55	-0,053	-0,63	-0,90	
23	HPLC	1,52	-0,083	-0,98	-1,42	
25	HPLC	1,64	0,032	0,38	0,55	
39	HPLC	1,68	0,077	0,91	1,31	
58	HPLC	1,67	0,067	0,79	1,14	
97	HPLC	1,70	0,097	1,15	1,65	
111	NMR	1,60	0,001	0,01	0,02	
112	NMR	1,69	0,086	1,02	1,47	
113	NMR	1,61	0,007	0,08	0,12	
114	NMR	1,65	0,044	0,52	0,75	
115	NMR	1,63	0,027	0,32	0,46	
116	NMR	1,73	0,125	1,48	2,13	
117	NMR	1,54	-0,062	-0,73	-1,06	

Der mit (**) gekennzeichnete Wert wurde bei der wiederholten Berechnung nicht berücksichtigt.

6.17.2 Laborergebnisse L-Äpfelsäure

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score	Z-Score	Hinweis
				Horwitz	exper.	
01	enz.(L-) Hand	1,44	-0,074	-0,92	-1,32	
02	enz.(L-), autom.	1,51	0,000	0,00	0,00	
03	enz.(L-), autom.	1,44	-0,072	-0,90	-1,28	
04	enz.(L-), autom.	1,57	0,060	0,75	1,07	
05	enz.(L-), autom.	1,49	-0,021	-0,26	-0,37	
08	enz.(L-) Hand	1,40	-0,110	-1,37	-1,96	
09	enz.(L-), autom.	1,52	0,010	0,12	0,18	
10	enz.(L-), autom.	1,50	-0,010	-0,12	-0,18	
11	enz.(L-), autom.	1,77	0,265	3,30	4,71	
13	enz.(L-), autom.	1,51	0,000	0,00	0,00	
15	enz.(L-), autom.	1,57	0,060	0,75	1,07	
16	enz.(L-), autom.	1,50	-0,010	-0,12	-0,18	
19	enz.(L-), autom.	1,53	0,020	0,25	0,36	
27	enz.(L-), autom.	1,40	-0,110	-1,37	-1,96	
30	enz.(L-), autom.	1,62	0,105	1,31	1,87	
38	enz.(L-), autom.	1,57	0,060	0,75	1,07	
40	enz.(L-), autom.	1,49	-0,025	-0,31	-0,44	
41	enz.(L-), autom.	1,74	0,230	2,86	4,09	
42	enz.(L-), autom.	1,69	0,180	2,24	3,20	
44	enz.(L-), autom.	1,46	-0,050	-0,62	-0,89	
45	enz.(L-), autom.	1,60	0,090	1,12	1,60	
46	enz.(L-), autom.	1,71	0,200	2,49	3,56	
47	enz.(L-), autom.	1,50	-0,010	-0,12	-0,18	
49	enz.(L-), autom.	1,61	0,100	1,25	1,78	
52	enz.(L-), autom.	1,51	0,000	0,00	0,00	
55	enz.(L-), autom.	1,48	-0,033	-0,41	-0,59	
56	enz.(L-), autom.	1,45	-0,060	-0,75	-1,07	
57	enz.(L-), autom.	1,48	-0,030	-0,37	-0,53	
58	enz.(L-), autom.	1,66	0,150	1,87	2,67	
60	enz.(L-), autom.	1,45	-0,060	-0,75	-1,07	
63	enz.(L-) Hand	1,71	0,200	2,49	3,56	
68	enz.(L-), autom.	1,57	0,060	0,75	1,07	
78	enz.(L-) Hand	1,48	-0,030	-0,37	-0,53	
102	enz.(L-), autom.	1,67	0,160	1,99	2,84	
109	enz.(L-), autom.	1,54	0,030	0,37	0,53	

6.17.3 FTIR-Laborergebnisse Gesamte Äpfelsäure

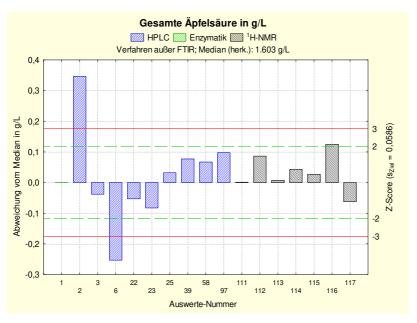
201 FTIR	Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
202 FTIR	201	FTIR	2,13	0,511	6,00	2,34	
204 FTIR 1,79 0,171 2,01 0,78 205 207 FTIR 1,50 0,0119 -1,40 0,55 207 FTIR 1,40 -0,219 -2,57 -1,00 208 FTIR 1,40 -0,219 -2,57 -1,00 1,00 208 FTIR 1,68 0,241 2,83 1,111 210 FTIR 1,73 0,111 1,30 0,51 211 FTIR 1,62 0,001 0,01 0,00 0,51 212 FTIR 1,62 0,001 0,01 0,00 0,51 212 FTIR 2,34 0,721 8,46 3,31 213 FTIR 1,77 0,151 1,77 0,69 215 FTIR 2,70 1,081 12,69 4,96 216 FTIR 2,70 1,081 12,69 4,96 216 FTIR 2,39 0,771 9,05 3,54 218 FTIR 2,39 0,771 9,05 3,54 218 FTIR 2,99 0,471 5,53 2,16 220 FTIR 2,09 0,471 5,53 2,16 220 FTIR 2,10 0,481 5,65 2,21 221 FTIR 1,91 0,291 3,42 1,33 222 FTIR 1,91 0,291 3,42 1,33 222 FTIR 1,91 0,207 2,43 0,95 224 FTIR 2,00 0,381 4,47 1,75 225 FTIR 1,83 0,011 0,13 0,05 226 FTIR 1,83 0,011 0,13 0,05 226 FTIR 1,84 0,321 1,42 0,56 227 FTIR 2,00 0,381 4,47 1,75 228 FTIR 1,89 0,71 1,42 0,56 232 FTIR 1,89 0,71 1,42 0,56 232 FTIR 1,89 0,71 1,42 0,56 232 FTIR 1,80 0,81 1,42 233 FTIR 1,80 0,81 1,42 234 FTIR 2,00 0,381 4,47 1,75 228 FTIR 1,80 0,181 2,12 0,58 234 FTIR 1,80 0,181 2,12 0,58 234 FTIR 1,80 0,181 2,12 0,58 234 FTIR 1,80 0,181 2,12 0,83 234 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,00 0,381 4,47 1,75 229 FTIR 1,80 0,181 2,12 0,56 41 1,15 244 FTIR 2,00 0,381 4,47 1,75 228 FTIR 1,80 0,181 2,12 0,58 1,15 244 FTIR 2,00 0,381 4,47 1,75 228 FTIR 1,80 0,181 2,12 0,83 234 FTIR 1,80 0,181 2,12 0,83 234 FTIR 1,80 0,181 2,12 0,83 234 FTIR 1,80 0,181 2,12 0,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 2,25 5 FTIR 1,80 0,181 2,12 0,56 6 1,15 2,25 5 FTIR 1,80 0,181 2,12 0,98 1,15 2,25 5 FTIR 1,80 0,181 2,12 0,98 1,15 2,25 5 FTIR 1,20 0,09 1,							
205 FTIR 1,50 -0,119 -1,40 -0,55 207 FTIR 1,40 -0,219 -2,57 -1,00 208 FTIR 1,86 0,241 2,83 1,11 210 FTIR 1,73 0,111 1,30 0,51 211 FTIR 1,73 0,111 1,30 0,51 211 FTIR 2,34 0,721 8,46 3,31 213 FTIR 1,77 0,151 1,77 0,89 215 FTIR 2,34 0,721 8,46 3,33 213 FTIR 1,77 0,151 1,77 0,89 215 FTIR 2,70 1,081 12,69 4,96 216 FTIR 1,79 0,171 2,01 0,78 217 FTIR 2,39 0,771 9,05 3,54 218 FTIR 1,94 0,321 3,77 1,47 219 FTIR 2,09 0,471 5,53 2,16 220 FTIR 2,10 0,481 5,65 2,21 221 FTIR 1,92 0,301 3,53 1,38 222 FTIR 1,91 0,291 3,42 1,33 223 FTIR 1,91 0,291 3,42 1,33 224 FTIR 2,00 0,381 4,47 1,75 225 FTIR 1,81 0,251 2,95 1,15 226 FTIR 1,87 0,251 2,95 1,15 227 FTIR 2,00 0,381 4,47 1,75 228 FTIR 1,87 0,251 2,95 1,15 229 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,79 0,171 2,01 0,78 229 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,89 0,271 3,18 1,24 231 FTIR 1,89 0,271 3,18 1,24 232 FTIR 1,89 0,271 3,18 1,24 233 FTIR 1,89 0,271 3,18 1,24 234 FTIR 2,00 0,381 4,47 1,75 228 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,89 0,271 3,18 1,24 231 FTIR 1,89 0,171 2,01 0,78 232 FTIR 1,89 0,271 3,18 1,24 233 FTIR 1,89 0,271 3,18 1,24 234 FTIR 2,00 0,381 4,7 1,75 244 FTIR 2,00 0,401 4,71 1,84 235 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,00 0,411 4,83 1,89 244 FTIR 2,01 0,491 5,76 2,25 241 FTIR 2,00 0,381 4,47 1,75 242 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,01 0,491 5,76 2,25 245 FTIR 1,80 0,181 0,95 0,37 246 FTIR 2,40 0,781 9,17 3,58 247 FTIR 2,00 0,381 4,47 1,75 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 1,80 0,181 0,95 0,37 240 FTIR 2,10 0,491 5,76 2,25 241 FTIR 2,00 0,381 4,47 1,75 242 FTIR 1,80 0,181 0,12 0,09 243 FTIR 1,80 0,181 0,12 0,09 244 FTIR 2,00 0,41 4,43 1,89 245 FTIR 1,80 0,181 0,12 0,09 255 FTIR 1,80 0,181 0,29 0,30 256 FTIR 1,80 0,41 1,49 1,79 1,79 1,79 1,79 1,79 1,79 1,79 1,7	203	FTIR					
205 FTIR	204	FTIR				0,78	
207 FTIR 1,40 -0,219 -2,57 -1,00 208 FTIR 1,86 0,241 2,83 1,11 210 FTIR 1,73 0,111 1,30 0,51 211 FTIR 1,62 0,001 0,01 0,00 0,51 212 FTIR 2,34 0,721 8,46 3,31 213 FTIR 1,77 0,151 1,77 0,89 215 FTIR 2,70 1,081 12,69 4,96 216 FTIR 1,79 0,171 2,01 0,78 217 FTIR 2,39 0,771 9,05 3,54 218 FTIR 2,90 0,471 5,53 2,16 220 FTIR 2,09 0,471 5,53 2,16 220 FTIR 1,91 0,291 3,42 1,33 222 FTIR 1,91 0,291 3,42 1,33 223 FTIR 1,91 0,291 3,42 1,33 224 FTIR 2,00 0,381 4,47 1,75 225 FTIR 1,80 0,011 0,13 0,05 226 FTIR 1,87 0,251 2,95 1,15 227 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,80 0,181 2,12 0,83 231 FTIR 1,80 0,181 2,12 0,83 232 FTIR 1,80 0,181 2,12 0,83 233 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,00 0,381 4,47 1,75 225 FTIR 1,80 0,181 2,12 0,83 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,00 0,381 4,47 1,75 230 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,00 0,381 4,77 1,75 235 FTIR 1,80 0,181 2,12 0,83 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,00 0,381 4,47 1,75 242 FTIR 2,00 0,381 4,47 1,75 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 2,00 0,381 4,77 1,75 255 FTIR 1,80 0,181 2,12 0,83 257 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,00 0,381 4,47 1,75 242 FTIR 2,00 0,381 4,47 1,75 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 1,80 0,181 2,12 0,83 257 FTIR 2,11 0,491 5,76 2,25 258 FTIR 1,80 0,181 2,12 0,83 259 FTIR 1,80 0,181 2,12 0,83 250 FTIR 1,76 0,141 1,89 0,74 250 FTIR 2,11 0,491 5,76 2,25 251 FTIR 1,80 0,181 2,12 0,83 252 FTIR 2,10 0,991 3,35 -1,46 253 FTIR 2,11 0,491 5,76 2,25 254 FTIR 2,00 0,381 4,47 1,75 255 FTIR 2,11 0,491 5,76 2,25 256 FTIR 1,80 0,181 2,12 0,83 257 FTIR 2,11 0,491 5,76 2,25 258 FTIR 1,80 0,681 0,95 0,97 258 FTIR 1,90 0,281 3,30 1,29 259 FTIR 2,00 0,391 1,152 4,50 260 FTIR 2,00 0,391 1,52 4,50 260 FTIR 1,90 0,281 3,30 1,29 261 FTIR 2,00 0,391 1,50 2,50 1,50 2,50 265 FTIR 1,90 0,371 4,36 1,77 266 FTIR	205	FTIR		-0,119	-1,40	-0,55	
210 FTIR 1,82 0.001 0.01 0.00 0.51 212 FTIR 1,82 0.001 0.01 1.07 0.00 212 FTIR 1,77 0.151 1.77 0.089 215 FTIR 2,70 1.081 1.269 4,96 216 FTIR 1,77 0.151 1.77 0.89 215 FTIR 2,79 0.171 2.01 0.78 217 FTIR 2,39 0.771 9.05 3,54 218 FTIR 2,39 0.771 9.05 3,54 218 FTIR 2,99 0.471 5.53 2,16 220 FTIR 2,09 0.471 5.53 2,16 220 FTIR 1,91 0.291 3,42 1.33 223 FTIR 1,91 0.291 3,42 1.33 223 FTIR 1,91 0.291 3,42 1.33 224 FTIR 2,00 0.381 4,47 1,75 226 FTIR 1,83 0.011 0.13 0.05 226 FTIR 1,83 0.011 0.13 0.05 228 FTIR 1,79 0.171 2.22 FTIR 1,89 0.271 3,18 1,24 230 FTIR 1,49 0.321 3,78 229 FTIR 2,00 0.381 4,47 1,75 228 FTIR 1,79 0.171 2.00 0.381 4,47 1,75 228 FTIR 1,79 0.171 2.00 0.381 4,47 1,75 228 FTIR 1,89 0.271 3,18 1,24 230 FTIR 1,89 0.271 3,18 1,24 230 FTIR 1,80 0.181 2,12 0.83 234 FTIR 2,00 0.491 5,76 2,25 241 FTIR 2,00 0.491 5,76 2,25 241 FTIR 2,00 0.381 4,47 1,75 229 FTIR 1,80 0.181 2,12 0.83 234 FTIR 2,00 0.381 4,47 1,75 229 FTIR 1,80 0.181 2,12 0.83 234 FTIR 2,00 0.381 4,71 1,75 229 FTIR 1,80 0.181 2,12 0.83 234 FTIR 2,00 0.381 4,71 1,75 229 FTIR 1,80 0.181 2,12 0.83 234 FTIR 2,00 0.381 4,71 1,75 2,25 FTIR 1,80 0.181 2,12 0.83 234 FTIR 2,00 0.381 4,71 1,75 2,25 FTIR 2,11 0.491 5,76 2,25 2,25 241 FTIR 2,00 0.381 4,71 1,75 2,25 FTIR 2,11 0.491 5,76 2,25 2,25 241 FTIR 2,00 0.381 4,47 1,75 2,25 2,25 2,25 2,25 2,25 2,25 2,25 2			1,40	-0,219	-2,57		
211 FTIR 1,62 0,001 0,01 0,00 212 FTIR 2,34 0,721 8,46 3,31 213 FTIR 1,77 0,151 1,77 0,89 215 FTIR 2,70 1,081 12,69 4,96 216 FTIR 1,79 0,171 2,01 0,78 217 FTIR 2,39 0,771 9,05 3,54 218 FTIR 1,94 0,321 3,77 1,47 219 FTIR 2,09 0,471 5,53 2,16 220 FTIR 2,10 0,481 5,65 2,21 221 FTIR 1,92 0,301 3,53 1,38 222 FTIR 1,91 0,291 3,42 1,33 223 FTIR 1,91 0,291 3,42 1,33 224 FTIR 2,00 0,381 4,47 1,75 225 FTIR 1,63 0,011 0,13 0,05 226 FTIR 1,87 0,251 2,95 1,15 227 FTIR 2,00 0,381 4,47 1,75 228 FTIR 1,87 0,251 2,95 1,15 229 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,00 0,401 4,71 1,84 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 1,80 0,181 2,12 0,83 238 234 FTIR 2,00 0,381 4,47 1,75 240 FTIR 1,80 0,181 2,12 0,83 231 FTIR 1,80 0,181 2,12 0,83 232 FTIR 1,80 0,181 2,12 0,83 233 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,00 0,381 4,47 1,75 235 FTIR 1,80 0,181 2,12 0,83 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,01 0,491 5,76 2,25 241 FTIR 2,01 0,491 5,76 2,25 241 FTIR 2,01 0,491 5,76 2,25 242 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,00 0,381 4,47 1,75 242 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 241 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,00 0,381 4,47 1,75 248 FTIR 2,00 0,381 4,47 1,75 249 FTIR 1,80 0,181 3,00 1,29 255 FTIR 1,80 0,181 3,00 1,29 256 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,00 0,381 3,30 1,29 257 FTIR 1,80 0,181 0,95 0,37 258 FTIR 1,70 0,081 0,95 0,37 259 FTIR 1,80 0,081 1,52 4,50 260 FTIR 1,90 0,281 3,30 1,29 259 FTIR 1,90 0,281 3,30 1,29 259 FTIR 1,90 0,281 3,30 1,29 250 FTIR 1,90 0,281 3,30 1,29 251 FTIR 1,90 0,281 3,30 1,29 252 FTIR 1,90 0,391 3,53 1,38 250 FTIR 1,90 0,281 3,30 1,29 251 FTIR 1,90 0,281 3,30 1,29 252 FTIR 1,90 0,391 3,53 1,38 250 FTIR 1,90 0,281 3,30 1,29 251 FTIR 1,90 0,281 3,30 1,29 252 FTIR 1,90 0,391 3,53 1,38 250 FTIR 1,90 0,281 3,30 1,29 251 FTIR 1,90 0,291 3,42 1,33 252 FTIR 1,90 0,291 3,42						1,11	
212 FTIR				0,111			
213 FTIR 1.77 0,151 1.77 0,69 215 FTIR 2.70 1.081 12.69 4.96 216 FTIR 1.79 0,171 2.01 0,78 217 FTIR 2.39 0,771 9,05 3,54 218 FTIR 1.94 0,321 3,77 1,47 219 FTIR 2.09 0,471 5.53 2,16 220 FTIR 2.10 0,481 5.65 2,21 221 FTIR 1.92 0,301 3,53 1,38 222 FTIR 1.91 0,291 3,42 1,33 223 FTIR 1.41 0,207 -2,43 -0,95 224 FTIR 2.00 0,381 4,47 1,75 225 FTIR 1.87 0,251 2,95 1,15 227 FTIR 1.87 0,251 2,95 1,15 227 FTIR 1.87 0,251 2,95 1,15 228 FTIR 1.89 0,271 3,18 1,24 229 FTIR 1.89 0,271 3,18 1,24 230 FTIR 1.79 0,171 2,01 0,78 234 FTIR 1.74 0,121 1,42 0,56 234 FTIR 1.74 0,121 1,42 0,56 334 FTIR 1.74 0,121 1,42 0,56 34 FTIR 1.80 0,181 2,12 0,83 234 FTIR 2.02 0,401 4,71 1,84 236 FTIR 1.80 0,181 2,12 0,83 237 FTIR 1.80 0,181 2,12 0,83 237 FTIR 2.11 0,491 5,76 2,25 241 FTIR 2.11 0,491 5,76 2,25 241 FTIR 2.01 0,78 1,15 242 FTIR 2.11 0,491 5,76 2,25 241 FTIR 2.01 0,78 1,15 2,11 0,491 5,76 2,25 5 1,15 244 FTIR 2.01 0,481 4,47 1,75 244 FTIR 2.01 0,491 5,76 2,25 5 1,15 244 FTIR 2.01 0,491 5,76 2,25 5 1,15 244 FTIR 2.01 0,491 5,76 2,25 241 FTIR 2.11 0,491 5,76 2,25 5 1,15 244 FTIR 2.01 0,491 5,76 2,25 5 1,15 244 FTIR 2.03 0,411 4,83 1,89 2,44 FTIR 1,76 0,141 1,66 0,65 5 FTIR 1,80 0,181 2,12 0,09 2,22 0,09 2,25 FTIR 1,80 0,281 3,30 1,29 2,55 FTIR 1,80 0,281 3,30 1,29 2,55 FTIR 1,90							
215 FTIR 2.70 1,081 12.69 4,96 216 FTIR 1.79 0.171 2.01 0.78 217 FTIR 1.94 0.321 3,77 1,47 219 FTIR 2.09 0.471 5.53 2.16 220 FTIR 2.10 0.481 5.65 2.21 221 FTIR 1,92 0,301 3.53 1,38 222 FTIR 1,91 0.291 3.42 1,33 223 FTIR 1,41 -0.207 2.43 -0.95 224 FTIR 2.00 0.381 4.47 1,75 225 FTIR 1,87 0.251 2,95 1,15 226 FTIR 1,87 0.00 0.381 4.47 1,75 227 FTIR 1,89 0.071 3,18 1,24 229 FTIR 1,89 0.271 3,18 1,24 230 FTIR 1,89 0.271 3,18 1,24 230 FTIR 1,89 0.271 3,18 1,24 231 FTIR 1,80 0.181 2,12 0,83 232 FTIR 1,80 0.181 2,12 0,83 233 FTIR 2,00 0.381 4.47 1,75 228 FTIR 1,79 0.171 2,01 0,78 229 FTIR 1,89 0.271 3,18 1,24 230 FTIR 1,79 0.171 2,01 0,78 231 FTIR 2,00 0,381 4,47 1,75 232 FTIR 1,89 0.271 3,18 1,24 244 FTIR 2,00 0,381 4,47 1,75 242 FTIR 1,89 0.271 3,18 1,24 244 FTIR 2,00 0,381 4,47 1,75 245 FTIR 1,74 0,121 1,42 0,56 246 FTIR 1,78 0,161 4,71 1,84 247 FTIR 2,01 4,91 5,76 2,25 248 FTIR 1,80 0,181 2,12 0,83 249 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,11 0,491 5,76 2,25 242 FTIR 2,00 0,381 4,47 1,75 242 FTIR 2,00 0,381 4,47 1,75 243 FTIR 2,11 0,491 5,76 2,25 244 FTIR 2,00 0,381 4,47 1,75 244 FTIR 2,00 0,381 4,47 1,75 245 FTIR 2,11 0,491 5,76 2,25 25 FTIR 1,87 0,251 2,95 1,15 247 FTIR 2,11 0,491 5,76 2,25 248 FTIR 1,87 0,251 2,95 1,15 249 FTIR 2,00 0,381 4,47 1,75 241 FTIR 2,00 0,381 4,47 1,75 242 FTIR 2,00 0,381 4,47 1,75 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 2,00 0,381 4,47 1,75 245 FTIR 1,87 0,261 2,95 1,15 246 FTIR 1,87 0,261 2,95 1,15 247 FTIR 2,01 0,491 5,76 2,25 257 FTIR 1,80 0,161 1,89 0,74 266 FTIR 1,70 0,491 9,17 3,58 268 FTIR 1,70 0,491 9,27 9,29 9,29 9,29 9,29 9,29 9,29 9,29							
216 FTIR 1,79 0,171 2,01 0,78 218 218 FTIR 2,39 0,771 9,05 3,54 218 FTIR 2,09 0,471 5,53 2,16 220 FTIR 2,10 0,481 5,65 2,21 221 FTIR 1,92 0,301 3,53 1,38 222 FTIR 1,91 0,291 3,42 1,33 223 FTIR 1,41 0,207 -2,43 -0,95 224 FTIR 2,00 0,381 4,47 1,75 225 FTIR 1,87 0,251 2,95 1,15 227 FTIR 2,00 0,381 4,47 1,75 228 FTIR 1,87 0,251 2,95 1,15 228 FTIR 1,79 0,171 2,01 0,78 229 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,89 0,271 3,18 1,24 232 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,00 0,401 4,71 1,84 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,00 1,81 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,11 0,491 5,76 2,25 242 FTIR 2,00 0,381 4,47 1,75 244 FTIR 2,11 0,491 5,76 2,25 244 FTIR 2,01 0,481 2,19 2,95 1,15 244 FTIR 2,11 0,491 5,76 2,25 244 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,03 0,411 4,83 1,89 244 FTIR 2,03 0,411 4,83 1,89 244 FTIR 2,03 0,411 4,83 1,89 245 FTIR 1,76 0,141 1,66 0,65 411 7,75 2,44 FTIR 1,76 0,141 4,83 1,89 2,49 FTIR 2,03 0,411 4,83 1,89 2,49 FTIR 2,00 0,381 4,47 1,75 2,56 FTIR 1,76 0,141 4,83 1,89 2,50 FTIR 2,19 0,571 6,70 2,65 2,55 FTIR 1,60 0,019 0,022 0,09 2,55 FTIR 1,60 0,019 0,022 0,09 2,55 FTIR 1,60 0,019 0,022 0,09 2,55 FTIR 1,90 0,281 3,30 1,29 2,55 FTIR 1,90 0,291 3,45 9,10 1,99 3,77 5 1,46 2,5 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,					1,77		
217 FTIR 2,39 0,771 9,05 3,54 218 FTIR 1,94 0,321 3,77 1,47 219 FTIR 2,09 0,471 5,53 2,16 220 FTIR 2,10 0,481 5,65 2,21 221 FTIR 1,92 0,301 3,53 1,38 222 FTIR 1,91 0,291 3,42 1,33 1,38 223 FTIR 1,41 -0,207 -2,43 -0,95 224 FTIR 2,00 0,381 4,47 1,75 225 FTIR 1,87 0,251 2,95 1,15 227 FTIR 1,87 0,251 2,95 1,15 228 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,74 0,121 1,42 0,56 232 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,00 0,401 4,71 1,84 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 1,80 0,181 2,12 0,83 237 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,00 0,381 4,47 1,75 242 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,01 0,491 5,76 2,25 241 FTIR 2,00 0,381 4,47 1,75 244 FTIR 2,03 0,411 4,83 1,89 2,44 FTIR 2,03 0,411 4,83 1,89 2,44 FTIR 2,00 0,381 4,47 1,75 2,55 2,55 1,15 2,95 1,15 2,95 1,15 2,95 1,15 2,95 1,15 2,95 1,15 2,95 1,15 2,95 1,16 2,25 2,5 2,10 2,95 1,15 2,95 2,95 1,15 2,95 1,15 2,95 2,95 2,95 2,95 2,95 2,95 2,95 2,9					12,69		
218 FTIR 1,94 0,321 3,77 1,47 219 FTIR 2,09 0,471 5,53 2,16 220 FTIR 1,92 0,301 3,53 1,38 221 FTIR 1,91 0,291 3,42 1,33 222 FTIR 1,91 0,291 3,42 1,33 223 FTIR 1,41 -0,207 -2,43 -0,95 224 FTIR 2,00 0,381 4,47 1,75 225 FTIR 1,63 0,011 0,13 0,05 226 FTIR 1,87 0,251 2,95 227 FTIR 2,00 0,381 4,47 1,75 228 FTIR 1,87 0,251 2,95 229 FTIR 1,87 0,251 2,95 229 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,74 0,121 1,42 0,56 232 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,02 0,401 4,71 1,84 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,02 0,401 4,71 1,84 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 240 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,00 0,381 4,47 1,75 242 FTIR 2,01 0,491 5,76 2,25 244 FTIR 2,01 0,491 5,76 2,25 245 FTIR 1,87 0,251 2,95 1,15 246 FTIR 2,11 0,491 5,76 2,25 247 FTIR 2,00 0,381 4,47 1,75 248 FTIR 2,00 0,381 4,47 1,75 249 FTIR 2,00 0,381 4,47 1,75 240 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,00 0,381 4,47 1,75 242 FTIR 2,00 0,381 4,47 1,75 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 2,00 0,381 4,47 1,75 245 FTIR 2,00 0,381 4,47 1,75 246 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,40 0,781 9,17 3,58 249 FTIR 1,90 0,281 3,30 1,29 255 FTIR 1,90 0,281 3,30 1,29 255 FTIR 1,90 0,281 3,30 1,29 256 FTIR 1,90 0,281 3,30 1,29 257 FTIR 1,90 0,281 3,30 1,29 258 FTIR 1,90 0,281 3,30 1,29 259 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 267 FTIR 1,90 0,281 3,30 1,29 268 FTIR 1,90 0,281 3,30 1,29 268 FTIR 1,90 0,281 3,30 1,29 269 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,29 261 FTIR 1,91 0,291 3,42 1,33 268 FTIR 1,91 0,291 3,42 1,33 277 FTIR 2,00 0,881 11,52 4,35 2,25 277 FTIR 1,91 0,291 3,45 1,17 278 FTIR 1,90 0,81 0,95 0,37 277 FTIR 1,91 0,291 3,45 1,17 278 FTIR 1,90 0,109 0,091 3,009							
219 FTIR 2,09 0,471 5,53 2,16 220 FTIR 2,10 0,481 5,665 2,21 221 FTIR 1,91 0,291 3,42 1,33 222 FTIR 1,91 0,291 3,42 1,33 223 FTIR 1,91 0,291 3,42 1,33 224 FTIR 2,00 0,381 4,47 1,75 225 FTIR 1,87 0,251 2,95 1,15 226 FTIR 1,87 0,251 2,95 1,15 227 FTIR 2,00 0,381 4,47 1,75 228 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,89 0,271 3,18 1,24 231 FTIR 1,80 0,181 2,12 0,83 232 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,00 0,401 4,71 1,84 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 240 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 2,03 0,411 4,83 1,89 243 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,70 0,081 0,95 0,37 249 FTIR 1,90 0,281 3,30 1,29 255 FTIR 1,90 0,281 3,30 1,29 256 FTIR 1,90 0,281 3,30 1,29 257 FTIR 1,90 0,281 3,30 1,29 268 FTIR 1,90 0,281 3,30 1,29 269 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,29 261 FTIR 2,11 1,90 0,281 3,30 1,29 263 FTIR 1,90 0,281 3,30 1,29 264 FTIR 1,90 0,281 3,30 1,29 265 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 267 FTIR 1,90 0,281 3,30 1,29 268 FTIR 1,90 0,281 3,30 1,29 269 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,29 261 FTIR 1,90 0,281 3,30 1,29 262 FTIR 1,90 0,291 3,42 1,92 263 FTIR 1,90 0,281 3,30 1,29 264 FTIR 1,90 0,281 3,30 1,29 265 FTIR 1,90 0,291 3,42 1,92 266 FTIR 1,90 0,291 3,42 1,92 267 FTIR 1,91 0,291 3,42 1,93 277 FTIR 1,90 0,11 1,11 1,10 1,10 1,10 1,10 1,10							
220 FTIR 1,92 0,301 3,53 1,38 222 FTIR 1,91 0,291 3,42 1,33							
221 FTIR 1,92 0,301 3,53 1,38 222 FTIR 1,91 0,291 3,42 1,33 223 FTIR 1,41 -0,207 -2,43 -0,95 224 FTIR 2,00 0,381 4,47 1,75 225 FTIR 1,87 0,251 2,95 1,15 226 FTIR 1,87 0,251 2,95 1,15 227 FTIR 2,00 0,381 4,47 1,75 228 FTIR 1,79 0,171 2,01 0,78 229 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,80 0,181 2,12 0,83 232 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,00 0,481 2,12 0,83 234 FTIR 2,00 0,181 2,12 0,83 237 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 240 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,11 1,87 0,251 2,95 1,15 242 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 2,00 0,381 4,47 1,75 244 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 2,00 0,381 4,47 1,75 245 FTIR 2,00 0,381 4,47 1,75 246 FTIR 2,00 0,381 4,47 1,75 247 FTIR 2,00 0,381 4,47 1,75 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,00 0,781 9,17 3,58 255 FTIR 1,00 0,081 0,95 0,37 256 FTIR 1,00 0,281 3,30 1,29 257 FTIR 1,00 0,281 3,30 1,29 258 FTIR 1,90 0,281 3,30 1,29 259 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 267 FTIR 1,90 0,281 3,30 1,29 268 FTIR 1,90 0,281 3,30 1,29 269 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,29 261 FTIR 1,90 0,281 3,30 1,29 262 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,90 0,281 3,30 1,29 264 FTIR 1,90 0,281 3,30 1,29 265 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 277 FTIR 1,91 0,291 3,42 1,33 277 FTIR 1,91 0,291 3,42 1,33 277 FTIR 1,91 0,291 3,42 1,33 277 FTIR 1,91 0,291 3,45 1,13 278 FTIR 1,90 0,191 0,022 0,09						2,16	
222 FTIR 1,91 0,291 3,42 1,33 223 FTIR 1,41 -0,207 -2,43 -0,95 224 FTIR 2,00 0,381 4,47 1,75 225 FTIR 1,63 0,011 0,13 0,05 226 FTIR 1,87 0,251 2,95 1,15 227 FTIR 2,00 0,381 4,47 1,75 228 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,79 0,171 2,01 0,78 232 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,74 0,121 1,42 0,56 232 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,02 0,401 4,71 1,84 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 240 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,11 0,491 5,76 2,25 242 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 2,03 0,411 4,83 1,89 245 FTIR 1,76 0,141 1,66 0,65 246 FTIR 1,76 0,141 1,66 0,65 247 FTIR 2,40 0,781 9,17 3,58 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,00 0,319 -3,75 -1,46 251 FTIR 1,00 0,019 -0,22 -0,09 253 FTIR 1,00 0,281 3,30 1,29 255 FTIR 1,00 0,281 3,30 1,29 255 FTIR 1,00 0,019 -0,22 -0,09 256 FTIR 1,00 0,011 1,14 1,30 1,29 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,00 0,019 -0,22 -0,09 259 FTIR 1,00 0,011 1,14 1,30 1,29 256 FTIR 1,00 0,011 1,14 1,30 1,29 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,00 0,011 3,30 1,29 259 FTIR 1,00 0,011 1,14 1,30 1,29 250 FTIR 1,00 0,011 1,14 1,30 1,29 251 FTIR 1,00 0,011 1,14 1,30 1,29 252 FTIR 1,00 0,011 1,14 1,30 1,29 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,00 0,011 1,14 1,30 1,29 259 FTIR 1,00 0,011 1,14 1,30 1,30 1,29 250 FTIR 1,20 0,011 1,14 1,30 1,30 1,29 251 FTIR 1,20 0,011 1,13 1,30 0,51 1,29 252 FTIR 1,20 0,011 1,14 1,30 1,30 1,29 253 FTIR 1,00 0,011 1,14 1,30 1,30 1,29 254 FTIR 1,190 0,211 3,30 1,29 255 FTIR 1,20 0,011 1,14 1,30 1,30 1,29 257 FTIR 1,20 0,011 1,14 1,30 1,30 1,29 258 FTIR 1,20 0,011 1,14 1,30 1,30 1,29 259 FTIR 1,20 0,011 1,14 1,30 1,30 1,29 250 FTIR 1,20 0,011 1,14 1,30 1,30 1,29 251 FTIR 1,20 0,011 1,14 1,14 1,14 1,14 1,14 1,14 1,							
223 FTIR							
224 FTIR						1,33	
225 FTIR 1,63 0,011 0,13 0,05 226 FTIR 1,87 0,251 2,95 1,15 227 FTIR 2,00 0,381 4,47 1,75 228 FTIR 1,79 0,171 2,01 0,78 229 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,02 0,401 4,71 1,84 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 240 FTIR 2,11 0,491 5,76 2,25 240 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,11 0,491 5,76 2,25 242 FTIR 1,87 0,251 2,95 1,15 242 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 2,00 0,381 4,47 1,75 245 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,78 0,161 1,89 0,74 246 FTIR 2,03 0,411 4,83 1,89 247 FTIR 2,03 0,411 4,83 1,89 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,90 0,281 3,30 1,29 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 1,90 0,281 3,30 1,29 258 FTIR 1,90 0,281 3,30 1,29 259 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 267 FTIR 1,90 0,281 3,30 1,29 268 FTIR 1,90 0,281 3,30 1,29 269 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,38 260 FTIR 1,90 0,281 3,30 1,39 260 FTIR 1,90 0,281 3,30 1,29 261 FTIR 1,90 0,281 3,30 1,29 262 FTIR 1,90 0,291 3,45 1,79 270 FTIR 1,90 0,301 3,53 1,38 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,91 0,291 3,42 1,33 275 FTIR 1,90 0,081 0,95 0,37 277 FTIR 1,36 0,025 -3,0							
226 FTIR				0,381		1,75	
227 FTIR 2,00 0,381 4,47 1,75 228 FTIR 1,79 0,171 2,01 0,78 229 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,02 0,401 4,71 1,84 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 240 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 2,00 0,381 4,47 1,75 242 FTIR 2,00 0,381 4,47 1,75 244 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,78 0,161 1,89 0,74 246 FTIR 2,40 0,781 9,17 3,58 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,00 0,281 3,30 1,29 255 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 1,90 0,281 3,30 1,29 257 FTIR 1,60 -0,019 -0,22 -0,09 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,90 0,281 3,30 1,29 264 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 267 FTIR 1,90 0,281 3,30 1,29 268 FTIR 1,90 0,281 3,30 1,29 269 FTIR 1,90 0,281 3,30 1,29 271 FTIR 1,90 0,281 3,30 1,29 272 FTIR 1,90 0,281 3,30 1,29 273 FTIR 2,00 0,391 1,52 1,92 266 FTIR 1,90 0,281 3,30 1,29 274 FTIR 2,60 0,981 11,52 4,50 276 FTIR 1,99 0,371 4,36 1,70 277 FTIR 1,94 0,081 0,95 0,37 277 FTIR 1,94 0,081 0,95 0,37 277 FTIR 1,90 0,281 3,04 1,19 278 FTIR 1,60 -0,019 -0,22 -0,09 279 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,90 0,281 3,94 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09						0,05	
228 FTIR 1,79 0,171 2,01 0,78 229 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,74 0,121 1,42 0,56 232 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,02 0,401 4,71 1,84 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 240 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,11 0,491 5,76 2,25 242 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,78 0,161 1,89 0,74 246 FTIR 2,40 0,781 9,17 3,58 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 3,75 -1,46 251 FTIR 1,30 -0,319 3,75 -1,46 251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,10 -0,081 3,30 1,29 266 FTIR 1,20 -0,419 -4,92 -1,92 267 FTIR 1,90 0,281 3,30 1,29 268 FTIR 1,90 0,281 3,30 1,29 269 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,29 261 FTIR 1,90 0,281 3,30 1,29 262 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,90 0,281 3,30 1,29 264 FTIR 2,01 0,391 4,59 1,79 265 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 267 FTIR 1,90 0,281 3,30 1,29 268 FTIR 1,90 0,281 3,30 1,29 269 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,29 261 FTIR 1,90 0,281 3,30 1,29 262 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,90 0,281 3,30 1,29 264 FTIR 1,90 0,281 3,30 1,29 265 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 267 FTIR 1,90 0,281 3,30 1,29 268 FTIR 1,90 0,281 3,30 1,29 269 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,29 261 FTIR 1,90 0,281 3,30 1,29 262 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,90 0,281 3,30 1,29 264 FTIR 1,90 0,281 3,30 1,29 277 FTIR 2,00 0,981 11,52 4,50 270 FTIR 1,90 0,981 11,52 4,50 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,00 0,981 11,52 4,50 276 FTIR 1,91 0,291 3,42 1,33 277 FTIR 1,91 0,291 3,42 1,33 278 FTIR 1,90 0,081 0,95 0,37 277 FTIR 1,90 0,081 0,95 0,37 277 FTIR 1,90 0,081 0,95 0,37 277 FTIR 1,90 0,081 0,95 0,37 278 FTIR 1,60 0,019 0,022 0,009	226	FTIR		0,251			
229 FTIR 1,89 0,271 3,18 1,24 230 FTIR 1,74 0,121 1,42 0,56 232 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,02 0,401 4,71 1,84 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 240 FTIR 2,11 0,491 5,76 2,25 241 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 242 FTIR 2,00 0,381 4,47 1,75 244 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,78 0,161 1,89 0,74 246 FTIR 2,40 0,781 9,17 3,58 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,90 0,281 3,30 1,29 255 FTIR 1,90 0,281 3,30 1,29 255 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,01 0,391 4,59 -0,22 2,009 259 FTIR 2,01 0,391 4,59 -0,22 2,009 259 FTIR 1,20 -0,419 -0,22 -0,09 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 267 FTIR 2,01 0,391 4,59 -1,79 258 FTIR 1,90 0,281 3,30 1,29 259 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 267 FTIR 2,01 0,391 4,59 -1,79 258 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,29 270 FTIR 1,90 0,281 3,30 1,29 271 FTIR 1,90 0,301 3,53 1,38 268 FTIR 1,90 0,301 3,53 1,38 268 FTIR 1,90 0,301 3,53 1,38 268 FTIR 1,90 0,301 3,53 1,38 273 FTIR 2,00 0,411 4,94 1,93 274 FTIR 1,91 0,291 3,42 1,33 3,22 271 FTIR 1,91 0,291 3,42 1,33 3,22 271 FTIR 1,91 0,291 3,42 1,33 3,22 277 FTIR 1,80 0,181 0,95 0,37 277 FTIR 1,80 0,181 0,95 0,37 277 FTIR 1,80 0,081 0,9						1,75	
230 FTIR 1,74 0,121 1,42 0,56 232 FTIR 1,80 0,181 2,12 0,83 234 FTIR 2,02 0,401 4,71 1,84 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 240 FTIR 2,11 0,491 5,76 2,25 241 FTIR 1,87 0,251 2,95 1,15 242 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,78 0,161 1,89 0,74 246 FTIR 2,40 0,781 9,17 3,58 248 FTIR 2,40 0,781 9,17 3,58 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 2,19 0,571 6,70 2,62 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,20 -0,419 -4,92 -1,92 261 FTIR 1,90 0,371 4,36 1,70 266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,99 0,371 4,36 1,70 268 FTIR 1,99 0,371 4,36 1,70 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,20 -0,091 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,91 0,291 3,42 1,33 275 FTIR 1,92 0,301 3,53 -1,74 277 FTIR 1,80 0,181 2,12 0,83 278 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,90 0,081 0,95 0,37 277 FTIR 1,80 0,181 2,12 0,83 278 FTIR 1,80 0,181 2,12 0,83 278 FTIR 1,90 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
232 FTIR	229	FTIR	1,89	0,271	3,18	1,24	
234 FTIR 2,02 0,401 4,71 1,84 236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 240 FTIR 2,11 0,491 5,76 2,25 241 FTIR 1,87 0,251 2,95 1,15 242 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,78 0,161 1,89 0,74 246 FTIR 2,40 0,781 9,17 3,58 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 0,411 4,83 1,89 250 FTIR 1,30 0,411 4,83 1,89 251 FTIR 1,57 0,049 0,52 0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 2,19 0,571 6,70 2,62 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,50 0,281 3,30 1,29 259 FTIR 1,50 0,019 -0,22 -0,09 259 FTIR 1,50 0,019 -0,22 -0,09 259 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,50 0,281 3,30 1,29 260 FTIR 1,50 -0,019 -0,22 -0,09 259 FTIR 1,50 0,281 3,30 1,29 260 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 268 FTIR 1,50 0,019 -0,22 -0,09 269 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,29 261 FTIR 1,90 0,281 3,30 1,29 262 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,90 0,281 3,30 1,29 264 FTIR 2,01 0,391 4,59 1,79 266 FTIR 1,90 0,281 3,30 1,29 267 FTIR 1,90 0,281 3,30 1,29 268 FTIR 1,90 0,281 3,30 1,29 269 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,29 261 FTIR 1,90 0,281 3,30 1,29 262 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,90 0,281 3,30 1,29 264 FTIR 2,01 0,419 4,92 -1,92 265 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 270 FTIR 1,90 0,91 1,11 1,30 0,51 270 FTIR 2,01 0,41 4,94 1,93 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,91 0,291 3,42 1,33 275 FTIR 1,91 0,291 3,42 1,33 276 FTIR 1,91 0,291 3,42 1,33 277 FTIR 1,91 0,291 3,42 1,33 278 FTIR 1,36 0,259 -3,04 -1,19 278 FTIR 1,36 0,259 -3,04 -1,19 278 FTIR 1,36 0,259 -3,04 -1,19				0,121			
236 FTIR 1,80 0,181 2,12 0,83 237 FTIR 2,11 0,491 5,76 2,25 240 FTIR 2,11 0,491 5,76 2,25 241 FTIR 1,87 0,251 2,95 1,15 242 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,78 0,161 1,89 0,74 246 FTIR 2,40 0,781 9,17 3,58 248 FTIR 2,03 0,411 4,83 1,89 249 FTIR 2,40 0,781 9,17 3,58 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 -1,79 258 FTIR 1,00 0,281 3,30 1,29 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,20 -0,419 -4,92 -1,92 261 FTIR 1,20 -0,419 -4,92 -1,92 263 FTIR 1,20 -0,419 -4,92 -1,92 266 FTIR 1,20 -0,419 -4,92 -1,92 267 FTIR 1,20 -0,419 -4,92 -1,92 268 FTIR 1,20 -0,419 -4,92 -1,92 269 FTIR 1,20 -0,419 -4,92 -1,92 266 FTIR 1,20 -0,419 -4,92 -1,92 267 FTIR 1,20 -0,419 -4,92 -1,92 268 FTIR 1,20 -0,419 -4,92 -1,92 269 FTIR 1,20 -0,419 -4,92 -1,92 266 FTIR 1,20 -0,419 -4,92 -1,92 267 FTIR 1,20 -0,419 -4,92 -1,92 268 FTIR 1,20 -0,419 -4,92 -1,92 269 FTIR 1,20 -0,419 -4,92 -1,92 270 FTIR 1,20 -0,419 -4,92 -1,92 271 FTIR 1,20 -0,419 -4,92 -1,92 272 FTIR 1,20 -0,419 -4,92 -1,92 272 FTIR 1,20 -0,20 -0,981 1,152 -0,20 -0,99 1,20	232	FTIR	1,80	0,181	2,12	0,83	
237 FTIR 2,11 0,491 5,76 2,25 240 FTIR 2,11 0,491 5,76 2,25 241 FTIR 1,87 0,251 2,95 1,15 242 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,78 0,161 1,89 0,74 246 FTIR 2,40 0,781 9,17 3,58 248 FTIR 2,03 0,411 4,83 1,89 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,20 -0,419 -4,92 -1,92 261 FTIR 1,20 -0,419 -4,92 -1,92 262 FTIR 1,20 -0,419 -4,92 -1,92 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,99 0,371 4,36 1,70 267 FTIR 1,99 0,371 4,36 1,70 268 FTIR 1,99 0,371 4,36 1,70 269 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,32 0,701 8,23 3,22 271 FTIR 2,04 0,421 4,94 1,93 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,91 0,291 3,42 1,33 275 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,90 0,81 0,95 0,37 277 FTIR 1,36 0,259 -3,04 1,19 278 FTIR 1,60 -0,019 -0,22 -0,09		FTIR		0,401			
240 FTIR 2,11 0,491 5,76 2,25 1,15 241 FTIR 1,87 0,251 2,95 1,15 1,15 242 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,78 0,161 1,89 0,74 246 FTIR 2,40 0,781 9,17 3,58 248 FTIR 2,40 0,781 9,17 3,58 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 2,19 0,571 6,70 2,62 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,20 -0,419 -4,92 -1,92 261 FTIR 1,20 -0,419 -4,92 -1,92 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,20 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 2,45 0,081 0,181 2,12 0,83 273 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,91 0,291 3,42 1,33 273 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09	236						
241 FTIR 1,87 0,251 2,95 1,15 242 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,78 0,161 1,89 0,74 246 FTIR 2,40 0,781 9,17 3,58 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 2,19 0,571 6,70 2,62 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 1,20 -0,419 -4,92 -1,92 266 FTIR 1,20 -0,419 -4,92 -1,92 267 FTIR 1,20 -0,419 -4,92 -1,92 268 FTIR 1,20 -0,419 -4,92 -1,92 266	237	FTIR	2,11	0,491	5,76	2,25	
242 FTIR 2,03 0,411 4,83 1,89 243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,78 0,161 1,89 0,74 246 FTIR 2,40 0,781 9,17 3,58 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,20 -0,419 -4,92 -1,92 261 FTIR 1,20 -0,419 -4,92 -1,92 262 FTIR 1,20 -0,419 -4,92 -1,92 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,99 0,371 4,36 1,70 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,32 0,701 8,23 3,22 271 FTIR 2,94 0,421 4,94 1,93 273 FTIR 1,91 0,291 3,42 1,33 273 FTIR 1,91 0,291 3,42 1,33 273 FTIR 1,91 0,291 3,42 1,33 274 FTIR 1,91 0,291 3,42 1,33 275 FTIR 1,91 0,291 3,42 1,33 276 FTIR 1,91 0,291 3,42 1,33 277 FTIR 1,90 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
243 FTIR 2,00 0,381 4,47 1,75 244 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,78 0,161 1,89 0,74 246 FTIR 2,40 0,781 9,17 3,58 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,00 0,281 3,30 1,29 260 FTIR 1,00 0,281 3,30 1,29 261 FTIR 2,01 0,391 4,59 1,79 252 FTIR 2,01 0,391 4,59 1,79 253 FTIR 1,90 0,281 3,30 1,29 264 FTIR 1,90 0,281 3,30 1,29 265 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 267 FTIR 1,90 0,281 3,30 1,29 268 FTIR 1,90 0,281 3,30 1,29 269 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,29 261 FTIR 1,90 0,281 3,30 1,29 262 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,90 0,281 3,30 1,29 264 FTIR 1,90 0,281 3,30 1,29 265 FTIR 1,90 0,281 3,30 1,29 266 FTIR 1,90 0,281 3,30 1,29 270 FTIR 2,76 1,141 13,40 5,23 (*) 286 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,91 0,291 3,42 1,33 275 FTIR 1,90 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
244 FTIR 1,76 0,141 1,66 0,65 245 FTIR 1,78 0,161 1,89 0,74 246 FTIR 2,40 0,781 9,17 3,58 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,60 -0,019 -0,22 -0,09 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,90 0,281 3,30 1,29 260 FTIR 1,90 0,281 3,30 1,29 264 FTIR 1,90				0,411			
245 FTIR 1,78 0,161 1,89 0,74 246 FTIR 2,40 0,781 9,17 3,58 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,20 -0,419 -4,92 -1,92 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,91 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,32 0,701 8,23 3,22 271 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
246 FTIR 2,40 0,781 9,17 3,58 248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,60 -0,019 -0,22 -0,09 260 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
248 FTIR 1,70 0,081 0,95 0,37 249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,90 0,281 3,30 1,29 264 FTIR 1,90 0,281 3,30 1,29 265 FTIR 1,90 0,371 4,36 1,70 266 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 2,94 0,421 4,94 1,93 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,91 0,291 3,42 1,33 275 FTIR 1,90 0,081 0,95 0,37 277 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,36 -0,259 -3,04 -1,19							
249 FTIR 2,03 0,411 4,83 1,89 250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,32 0,701 8,23 3,22 271 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,91 0,291 3,42 1,33 275 FTIR 1,90 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
250 FTIR 1,30 -0,319 -3,75 -1,46 251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,91 0,291 3,42 1,33 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,36 -0,259 -3,04 -1,19							
251 FTIR 1,60 -0,019 -0,22 -0,09 253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
253 FTIR 1,90 0,281 3,30 1,29 255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,92 0,301 3,53 1,38 268 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,36 -0,259 -3,04 -1,19							
255 FTIR 2,19 0,571 6,70 2,62 256 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,92 0,301 3,53 1,38 268 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09			1,60		-0,22	-0,09	
256 FTIR 1,57 -0,049 -0,58 -0,22 257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,20 -0,419 -4,92 -1,92 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09						1,29	
257 FTIR 2,01 0,391 4,59 1,79 258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
258 FTIR 1,60 -0,019 -0,22 -0,09 259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
259 FTIR 1,20 -0,419 -4,92 -1,92 260 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
260 FTIR 1,90 0,281 3,30 1,29 263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
263 FTIR 1,20 -0,419 -4,92 -1,92 264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
264 FTIR 2,76 1,141 13,40 5,23 (*) 265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09					3,30		
265 FTIR 1,99 0,371 4,36 1,70 266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09					-4,92		
266 FTIR 1,73 0,111 1,30 0,51 267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							(*)
267 FTIR 1,92 0,301 3,53 1,38 268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
268 FTIR 1,64 0,021 0,25 0,10 269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
269 FTIR 2,60 0,981 11,52 4,50 270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
270 FTIR 2,32 0,701 8,23 3,22 271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
271 FTIR 1,91 0,291 3,42 1,33 273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
273 FTIR 2,04 0,421 4,94 1,93 274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
274 FTIR 1,24 -0,379 -4,45 -1,74 275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
275 FTIR 1,80 0,181 2,12 0,83 276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
276 FTIR 1,70 0,081 0,95 0,37 277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
277 FTIR 1,36 -0,259 -3,04 -1,19 278 FTIR 1,60 -0,019 -0,22 -0,09							
278 FTIR 1,60 -0,019 -0,22 -0,09							
280 FIIR 1,/1 0,091 1,0/ 0.42							
	280	FIIK	1,/1	0,091	1,07	0,42	

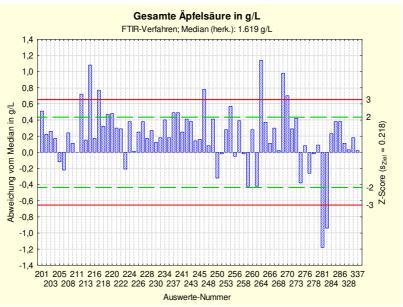
^(*) Dieser Wert weicht um mehr als 50 % vom Median der herkömmlichen Werte ab.

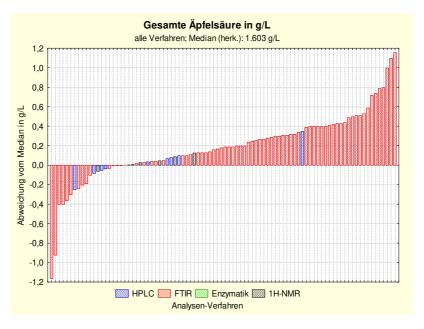
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
281 282 284 285 286 321 328 330 337	FTIR FTIR FTIR FTIR FTIR FTIR FTIR FTIR	0,44 0,68 1,85 2,00 2,00 1,73 1,65 1,80 1,64	-1,179 -0,939 0,231 0,381 0,381 0,111 0,031 0,181 0,021	-13,84 -11,02 2,71 4,47 4,47 1,30 0,36 2,12 0,25	-5,41 -4,31 1,06 1,75 1,75 0,51 0,14 0,83 0,10	(*) (*)

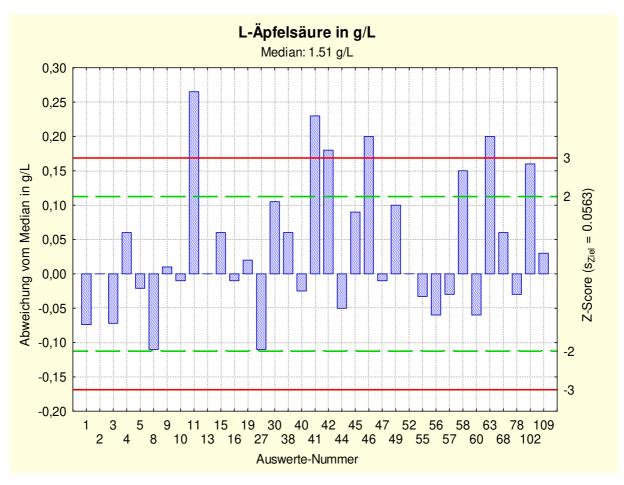
^(*) Diese Werte weichen um mehr als 50 % vom Median der herkömmlichen Werte ab.

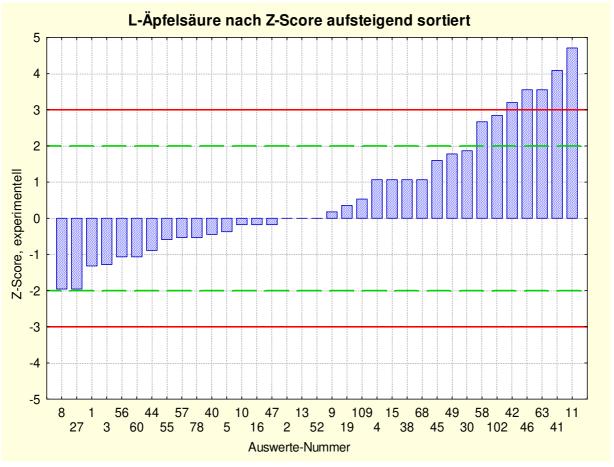
6.17.4 Deskriptive Ergebnisse


Ergebnisse in g/L für:	Gesamte Äpfelsäu	ıre (ohne NMR)	L-Äpfelsäure
	alle Daten	ber. Daten	alle Daten
Gültige Werte	10	9	35
Minimalwert	1,35	1,35	1,40
Mittelwert	1,622	1,586	1,546
Median	1,619	1,603	1,510
Maximalwert	1,95	1,70	1,77
Standardabweichung (s _L)	0,154	0,108	0,099
Standardfehler des Mittelwertes (u _M)	0,049	0,036	0,017
Zielstandardabweichung n. Horwitz (s _H)	0,085	0,084	0,080
Zielstandardabweichung, experimentell (sexp)	0,059	0,059	0,056
Zielstandardabweichung, experimentell (sü FTIR)	0,218	0,218	
Horrat-Wert (s _L /s _H)	1,80	1,28	1,23
Quotient (s _L /s _{exp})	2,60	1,84	1,75
Quotient (s _L /s _{Ü FTIR})	0,71	0,50	
Quotient (u _M /s _H)	0,57	0,43	0,21
Quotient (u _M /s _{exp herk.})	0,82	0,61	0,30
Quotient (u _M /s _{Ü FTIR})	0,22	0,17	


6.17.5 Angaben zu den Analyseverfahren


Stand: 02.03.2021


Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
HPLC	Hochdruckflüssigkeitschromatographie	9	1,617	0,133
enzymat. Hand	D- und L-Äpfelsäure, enzymatisch, manuell	1	1,603	
	herkömmliche Verfahren	10	1,615	0,111
FTIR	Fourier-Transform-Infrarotspektroskopie	73	1,836	0,279
NMR	¹ H-Kernresonanzspektroskopie	7	1,636	0,064
enz.(L-), autom.	enzymatisch, nur L-Form, automatisiert	31	1,546	0,093
enz.(L-) Hand	enzymatisch, nur L-Form, automatisiert	4	1,500	0,145
	alle Verfahren L-Äpfelsäure	35	1,541	0,100


Probe FT20P01: Äpfelsäure

6.18 Gesamte Milchsäure und L-Milchsäure [g/L]

6.18.1 Herkömmliche Laborergebnisse Gesamte Milchsäure

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Hinweis
01	enzymat. Hand	0,489	0,020	0,69	
02	HPLC	0,518	0,049	1,67	
03	HPLC	0,525	0,056	1,90	
04	enzymat. autom.	0,510	0,041	1,40	
05	enzymat. autom.	0,483	0,014	0,49	
06	HPLC	0,517	0,048	1,63	
08	enzymat. Hand	0,482	0,013	0,45	
09	enzymat. autom.	0,404	-0,065	-2,17	
11	enzymat. autom.	0,455	-0,014	-0,45	
19	enzymat. autom.	0,430	-0,039	-1,30	
22	HPLC	0,270	-0,199	-6,68	(**)
23	HPLC	0,420	-0,049	-1,63	
25	HPLC	0,306	-0,163	-5,47	(**)
39	HPLC	0,430	-0,039	-1,30	
58	HPLC	0,442	-0,027	-0,89	
63	enzymat. Hand	0,520	0,051	1,73	
68	enzymat. autom.	0,450	-0,019	-0,62	
97	HPLC	0,330	-0,139	-4,66	
111	NMR	0,414	-0,054	-1,82	
112	NMR	0,458	-0,010	-0,35	
113	NMR	0,444	-0,025	-0,82	
114	NMR	0,439	-0,030	-1,00	
115	NMR	0,516	0,047	1,60	
116	NMR	0,451	-0,017	-0,58	

Probe FT20P01: Milchsäure

Die mit (**) gekennzeichneten Werte wurden bei der wiederholten Berechnung nicht berücksichtigt.

6.18.2 Laborergebnisse L-Milchsäure

Stand: 02.03.2021

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
01	enz.(L-) Hand	0,323	0,013	0,62	0,41	
02	enz.(L-) autom.	0,292	-0,018	-0,86	-0,57	
03	enz.(L-) autom.	0,371	0,061	2,92	1,94	
04	enz.(L-) autom.	0,320	0,010	0,48	0,32	
05	enz.(L-) autom.	0,303	-0,007	-0,33	-0,22	
08	enz.(L-) Hand	0,310	0,000	0,00	0,00	
09	enz.(L-) autom.	0,308	-0,002	-0,10	-0,06	
10	enz.(L-) autom.	0,360	0,050	2,39	1,59	
11	enz.(L-) autom.	0,300	-0,010	-0,48	-0,32	
13	enz.(L-) autom.	0,400	0,090	4,30	2,86	
15	enz.(L-) autom.	0,355	0,045	2,15	1,43	
16	enz.(L-) autom.	0,100	-0,210	-10,04	-6,68	(*)
19	enz.(L-) autom.	0,280	-0,030	-1,43	-0,95	
27	enz.(L-) autom.	0,300	-0,010	-0,48	-0,32	
30	enz.(L-) autom.	0,314	0,004	0,19	0,13	
38	enz.(L-) autom.	0,280	-0,030	-1,43	-0,95	
40	enz.(L-) autom.	0,280	-0,030	-1,43	-0,95	
41	enz.(L-) autom.	0,290	-0,020	-0,96	-0,64	
42	enz.(L-) autom.	0,350	0,040	1,91	1,27	
44	enz.(L-) autom.	0,300	-0,010	-0,48	-0,32	
45	enz.(L-) autom.	0,360	0,050	2,39	1,59	
46	enz.(L-) autom.	0,310	0,000	0,00	0,00	
47	enz.(L-) autom.	0,300	-0,010	-0,48	-0,32	
49	enz.(L-) autom.	0,380	0,070	3,35	2,23	
55	enz.(L-) autom.	0,270	-0,040	-1,91	-1,27	
56	enz.(L-) autom.	0,310	0,000	0,00	0,00	
57	enz.(L-) autom.	0,280	-0,030	-1,43	-0,95	
58	enz.(L-) autom.	0,320	0,010	0,48	0,32	
60	enz.(L-) autom.	0,400	0,090	4,30	2,86	
63	enz.(L-) Hand	0,380	0,070	3,35	2,23	
68	enz.(L-) autom.	0,290	-0,020	-0,96	-0,64	
78	enz.(L-) Hand	0,290	-0,020	-0,96	-0,64	
102	enz.(L-) autom.	0,410	0,100	4,78	3,18	
109	enz.(L-) autom.	0,264	-0,046	-2,20	-1,46	

(*) Dieser Wert weicht um mehr als 50 % vom Median der herkömmlichen Werte ab.

Keine Berechnung von Z-Score, da Gehalt geringer als untere Grenze des Anwendungsbereichs.

Probe FT20P01: Milchsäure

	·	•	ŭ			
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score	Z-Score	Hinweis
				Horwitz	exper.	
201	FTIR	0,410	-0,059			
202	FTIR	0,315	-0,154			
203	FTIR	0,540	0,072			
204	FTIR	0,540	0,072			
205	FTIR	0,320	-0,149			
207	FTIR	0,300	-0,169			(***)
208	FTIR	0,370	-0,099			()
209	FTIR	0,300	-0,169			(***)
210	FTIR	0,470	0,001			()
211	FTIR	0,520	0,051			
212	FTIR	0,260	-0,209			(***)
213	FTIR	0,310	-0,159			, ,
215	FTIR	0,500	0,031			
216	FTIR	0,570	0,101			
217	FTIR	<= 0	-0,469			(*)
218	FTIR	0,180	-0,289			(*)
219	FTIR	0,360	-0,109			
220	FTIR	<= 0	-0,469			(*)
221	FTIR	0,670	0,202			(***)
222	FTIR	-0,320	-0,788			(*)
223	FTIR	<= 0	-0,469			(*)
224	FTIR	0,300	-0,169			(***)
225	FTIR	0,400	-0,069			
226	FTIR	0,650	0,181			(***)
227	FTIR	0,500	0,031			
228	FTIR	0,260	-0,209			(***)
229	FTIR	0,570	0,101			(444)
230	FTIR	0,300	-0,169			(***)
232	FTIR	0,310	-0,159			
234	FTIR	0,510	0,041			(***)
236	FTIR	0,300	-0,169			
237 240	FTIR FTIR	<= 0 0,200	-0,469 -0,269			(*) (*)
241	FTIR	0,200	-0,139			(*)
242	FTIR	0,330	0,001			
243	FTIR	0,500	0,031			
244	FTIR	0,470	0,001			
245	FTIR	0,480	0,011			
246	FTIR	0,200	-0,269			(*)
248	FTIR	0,500	0,031			()
249	FTIR	0,610	0,141			(***)
250	FTIR	0,500	0,031			()
251	FTIR	0,340	-0,129			
253	FTIR	0,300	-0,169			(***)
255	FTIR	0,280	-0,189			(***)
256	FTIR	0,210	-0,259			(*)
257	FTIR	0,240	-0,229			(***)
258	FTIR	0,400	-0,069			
259	FTIR	0,200	-0,269			(*)
260	FTIR	0,300	-0,169			(***)
263	FTIR	0,500	0,031			
264	FTIR	0,740	0,271			(*)
265	FTIR	0,310	-0,159			
266	FTIR	2,290	1,821			(*)
267	FTIR	0,270	-0,199			(***)
268	FTIR	0,410	-0,059			
269	FTIR	-0,220	-0,689			(*)
270	FTIR	0,590	0,121			
271	FTIR	0,320	-0,149			
273	FTIR	0,460	-0,009			/***\
274	FTIR	0,230	-0,239			(***) (*)
275	FTIR	0,060	-0,409			(*)

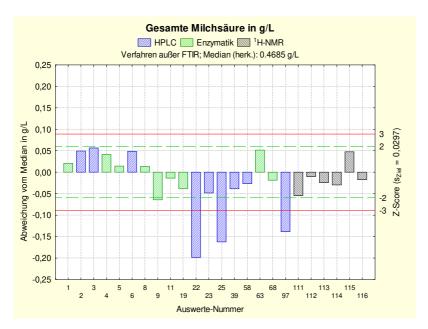
Die mit (*) markierten Werte weichen um mehr als 50 % vom Median der herkömmlichen Werte ab. Die mit (***) markierten Werte weichen um mehr als 5 Z-Score-Einheiten vom maßgeblichen Median ab.

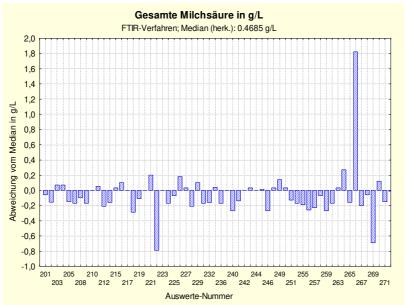
Stand: 02.03.2021 Wiss. Arbeitsausschuss FTIR-Kalibrierung Seite 111 von 136

Fortsetzung: FTIR-Laborergebnisse

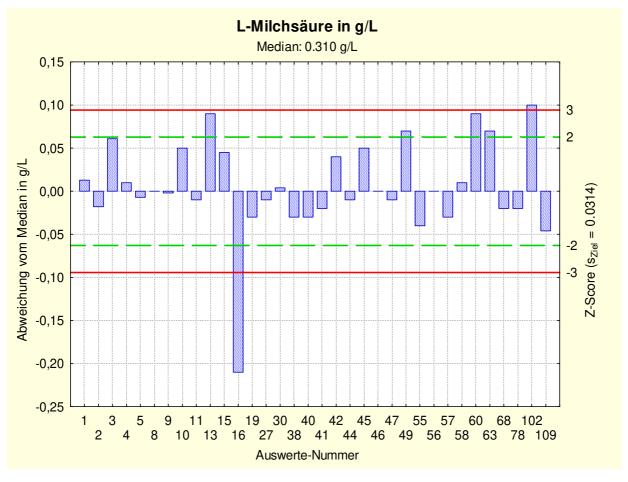
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
276	FTIR	0,300	-0,169			(***)
277	FTIR	0,220	-0,249			`(*)
278	FTIR	0,500	0,031			
280	FTIR	0,280	-0,189			(***)
281	FTIR	0,280	-0,189			(***)
282	FTIR	0,560	0,092			
284	FTIR	0,480	0,011			
285	FTIR	0,600	0,131			(***)
286	FTIR	0,310	-0,159			
321	FTIR	0,250	-0,219			(***)
328	FTIR	0,540	0,072			
330	FTIR	0,500	0,031			
337	FTIR	<= 0	-0,469			(*)

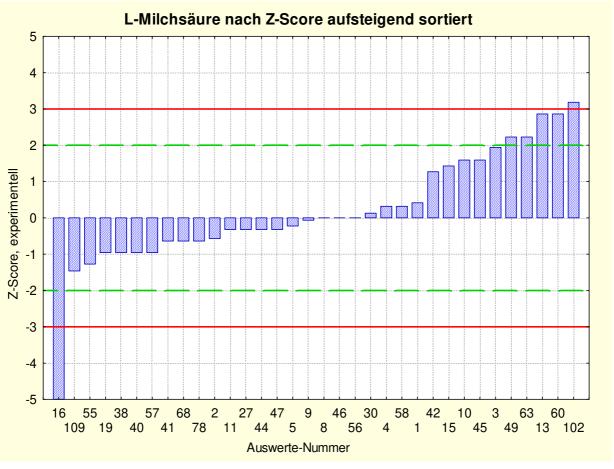
Probe FT20P01: Milchsäure


Die mit (*) markierten Werte weichen um mehr als 50 % vom Median der herkömmlichen Werte ab. Die mit (***) markierten Werte weichen um mehr als 5 Z-Score-Einheiten vom maßgeblichen Median ab.


6.18.4 Deskriptive Ergebnisse

Ergebnisse in g/L für :		Milchsäure	L-Milchsäure	
	alle Werte	ber. Werte	alle Werte	
Gültige Werte	18	16	33	
Minimalwert	0,27	0,33	0,26	
Mittelwert	0,443	0,463	0,321	
Median	0,453	0,469	0,310	
Maximalwert	0,53	0,53	0,41	
Standardabweichung (s _L)	0,076	0,053	0,041	
Standardfehler des Mittelwertes (u _M)	0,018	0,013	0,007	
Zielstandardabweichung n. Horwitz (s _H)	0,029	0,030	0,021	
Zielstandardabweichung, experimentell (sexp)			0,031	
Zielstandardabweichung, experimentell (sü FTIR)	(0,209)	(0,209)		
Horrat-Wert (s _L /s _H)	2,63	1,79	1,96	
Quotient (s _L /s _{exp})			1,31	
Quotient (s _L /s _{Ü FTIR})	(0,36)	(0,25)		
Quotient (u _M /s _H)	0,62	0,45	0,34	
Quotient (u _M /s _{exp herk.})			0,23	
Quotient (u _M /s _{Ü FTIR})	(0,09)	(0,06)		


6.18.5 Angaben zu den Analyseverfahren


Verfahren	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
HPLC	Hochdruckflüssigkeitschromatographie	9	0.4176	0.109
enzymat. autom.	D- und L-Milchsäure, enzymatisch, automatisiert	6	0,4553	0,043
enzymat. Hand	D- und L-Milchsäure, enzymatisch, manuell	3	0,4942	0,017
	herkömmliche Verfahren Ges. Milchsäure	18	0,4513	0,068
FTIR	Fourier-Transform-Infrarotspektroskopie	74	0,3711	0,172
NMR	¹ H-Kernresonanzspektroskopie	6	0,4505	0,028
enz.(L-) autom.	enzymatisch nur L-Form, automatisiert	30	0,3157	0,0437
enz.(L-) Hand	enzymatisch nur L-Form	4	0,3245	0,0412
	alle Verfahren L-Milchsäure	34	0,3169	0,0430

6.19 Reduktone [mg/L]

6.19.1 Laborergebnisse

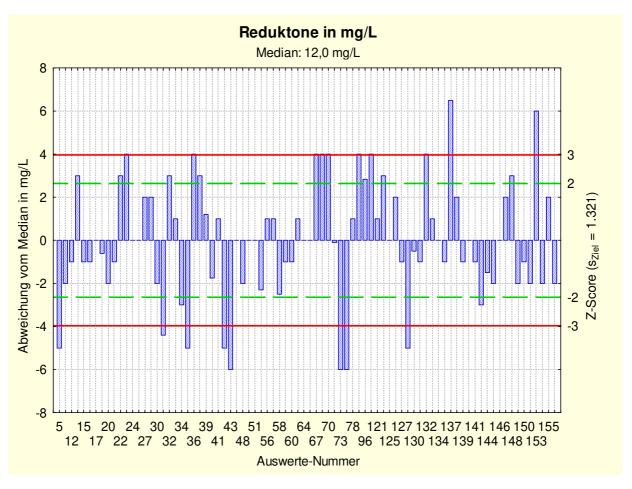
Auswerte- Nr.	Verfahren	Reaktionszeit min	Mess- wert	Abwei- chung	Z-Score Horwitz	Hinweis
05	Acetaldehyd/potent.	30	7,0	-5,00	-3,79	
10	Glyoxal/potentiometr.	15	10,0	-2,00	-1,51	
12	Glyoxal/potentiometr.	20	11,0	-1,00	-0,76	
14	Glyoxal/potentiometr.	25	15,0	3,00	2,27	
15	Glyoxal/potentiometr.	10	11,0	-1,00	-0,76	
16	Glyoxal/Stärke	5	11,0	-1,00	-0,76	
17	Propionaldehyd/Stärke	5	12,0	0,00	0,00	
19	Glyoxal/potentiometr.	5	11,4	-0,60	-0,45	
20	Glyoxal/Stärke	5	10,0	-2,00	-1,51	
21	Glyoxal/Stärke	5	11,0	-1,00	-0,76	
22	Glyoxal/potentiometr.	10	15,0	3,00	2,27	
23	Glyoxal/Stärke	5	16,0	4,00	3,03	
24	Glyoxal/Stärke	15	12,0	0,00	0,00	
25	Glyoxal/Stärke	5	3,0	-9,00	-6,81	(*)
26	Glyoxal/potentiometr.	5	12,0	0,00	0,00	()
27	Glyoxal/potentiometr.	5	14,0	2,00	1,51	
29	Glyoxal/Stärke	5	14,0	2,00	1,51	
30	Glyoxal/Stärke	30	10,0	-2,00	-1,51	
31	Glyoxal/potentiometr.		7,6	-4,40	-3,33	
32	Propionaldehyd/Stärke	5	15,0	3,00	2,27	
33	Glyoxal/potentiometr.	10	13,0	1,00	0,76	
34	Glyoxal/Stärke	5	9,0	-3,00	-2,27	
35	Glyoxal/Stärke	10	7,0	-5,00	-3,79	
36	Glyoxal/Stärke	10	16,0	4,00	3,03	
38	Glyoxal/Stärke	5	15,0	3,00	2,27	
39	Glyoxal/potentiometr.	5	13,2	1,20	0,91	
40	Glyoxal/Stärke	5	10,3	-1,75	-1,32	
41	Glyoxal/Stärke	10	13,0	1,00	0,76	
42	Glyoxal/Stärke	5	7,0	-5,00	-3,79	
43	Glyoxal/Stärke	5	6,0	-6,00	-4,54	
47	Glyoxal/Stärke	10	12,0	0,00	0,00	
48	Glyoxal/Stärke	5	10,0	-2,00	-1,51	
49	Glyoxal/Stärke	5	12,0	0,00	0,00	
51	Propionaldehyd/Stärke	5	12,0	0,00	0,00	
55	Glyoxal/MTT	5	9,7	-2,30	-1,74	
56	Glyoxal/Stärke	6	13,0	1,00	0,76	
57	Glyoxal/potentiometr.	5	13,0	1,00	0,76	
57 58	Acetaldehyd/potent.	10	9,5	-2,50	-1,89	
56 59		20	11,0	-2,50 -1,00	-0,76	
	Glyoxal/potentiometr.					
60	Glyoxal/Stärke	10	11,0	-1,00	-0,76	
63	Glyoxal/Stärke	5 5	13,0	1,00	0,76	
64 65	Glyoxal/Stärke	5 5	12,0	0,00	0,00	
65 67	Glyoxal/potentiometr.		12,0	0,00	0,00	
67 60	Glyoxal/potentiometr.	10	16,0	4,00	3,03	
68	Acetaldehyd/potent.	10	16,0	4,00	3,03	
70 70	Glyoxal/potentiometr.	F	16,0	4,00	3,03	
72 72	Glyoxal/Stärke	5	11,9	-0,10	-0,08	
73 70	Glyoxal/Stärke	5	6,0	-6,00	-4,54	
76 70	Glyoxal/potentiometr.	5	6,0	-6,00	-4,54	
78	Acetaldehyd/Stärke	10	13,0	1,00	0,76	/ * \
83	Glyoxal/potentiometr.	5	19,0	7,00	5,30	(*)
84	Glyoxal/potentiometr.	5	16,0	4,00	3,03	
96	Glyoxal/potentiometr.	00	14,8	2,84	2,15	
103	Propionaldehyd/Stärke	20	16,0	4,00	3,03	
121	Glyoxal/potentiometr.	10	13,0	1,00	0,76	
122	Propionaldehyd/Stärke	.5	15,0	3,00	2,27	
125	Glyoxal/Stärke	15	12,0	0,00	0,00	
126	Glyoxal/potentiometr.	10	14,0	2,00	1,51	
127	Propionaldehyd/Stärke	10	11,0	-1,00	-0,76	
128	Glyoxal/Stärke	20	7,0	-5,00	-3,79	
130	Glyoxal/potentiometr.	5	11,5	-0,50	-0,38	
131 132	Glyoxal/Stärke		11,0	-1,00	-0,76	
	Propionaldehyd/Stärke	5	16,0	4,00	3,03	

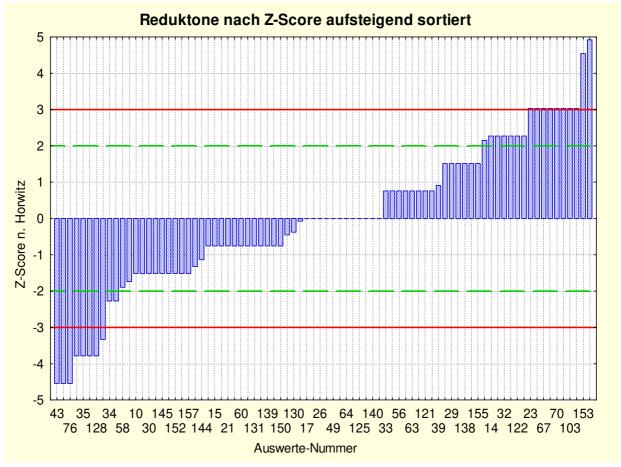
^(*) Diese Werte wurden wegen mehr als 50 % Abweichung vom Median bei den Berechnungen nicht berücksichtigt.

Probe FT20P01: Reduktone

Fortsetzung: Laborergebnisse

Auswerte- Nr.	Verfahren	Reaktionszeit min	Mess- wert	Abwei- chung	Z-Score Horwitz	Hinweis
133	Glyoxal/potentiometr.	10	13,0	1,00	0,76	
134	Propionaldehyd/Stärke	5	12,0	0,00	0,00	
136	Propionaldehyd/Stärke	5	11,0	-1,00	-0,76	
137	Glyoxal/Stärke	20	18,5	6,50	4,92	
138	Glyoxal/Stärke	8	14,0	2,00	1,51	
139	Glyoxal/potentiometr.	15	11,0	-1,00	-0,76	
140	Glyoxal/potentiometr.	10	12,0	0,00	0,00	
141	Glyoxal/potentiometr.	5	11,0	-1,00	-0,76	
142	Propionaldehyd/Stärke	· ·	9,0	-3,00	-2,27	
144	Glyoxal/Stärke	5	10,5	-1,50	-1,14	
145	Glyoxal/potentiometr.	5 2	10,0	-2,00	-1,51	
146	Glyoxal/Stärke	_	12,0	0,00	0,00	
147	Glyoxal/potentiometr.	5	14,0	2,00	1,51	
148	Glyoxal/Stärke	5 5	15,0	3,00	2,27	
149	Glyoxal/Stärke	Ŭ	10,0	-2,00	-1,51	
150	Glyoxal/Stärke		11,0	-1,00	-0,76	
151	k. A.		9,0	-3,00	-2,27	
152	Glyoxal/Stärke	5	10,0	-2,00	-1,51	
153	Glyoxal/potentiometr.	10	18,0	6,00	4,54	
154	Glyoxal/Stärke	5	10,0	-2,00	-1,51	
155	Propionaldehyd/Stärke	5	14,0	2,00	1,51	
156	Glyoxal/potentiometr.	15	5,0	-7,00	-5,30	(*)
157	Glyoxal/Stärke	5	10,0	-2,00	-1,51	()


^(*) Dieser Wert wurde wegen mehr als 50 % Abweichung vom Median bei den Berechnungen nicht berücksichtigt.


6.19.2 Deskriptive Ergebnisse

Ergebnisse für Reduktone in mg/L	alle Daten
Gültige Werte	82
Minimalwert	6,0
Mittelwert	11,99
Median	12,00
Maximalwert	18,5
Standardabweichung (s _L)	2,750
Standardfehler des Mittelwertes (u _M)	0,304
Zielstandardabweichung n. Horwitz (s _H)	1,321
Zielstandardabweichung, experimentell (sexp)	
Horrat-Wert (s _L /s _H)	2,08
Quotient (s _L /s _{exp})	
Quotient (u _M /s _H)	0,23
Quotient (u _M /s _{exp herk.})	

6.19.3 Angaben zu den Analyseverfahren

Verfahren	Verfahrensbeschreibung	Anzahl	Robustes Mittel	Robuste StdAbw.
Acetaldehyd/Stärke	SO ₂ -Bindung mit Acetaldehyd; Stärke als Indikator	1	13,000	
Acetaldehyd/potent.	SO ₂ -Bindung mit Acetaldehyd; Platinelektrode	3	10,520	4,679
Propionaldehyd/Stärke	SO ₂ -Bindung mit Propionaldehyd; Stärke als Indikator	11	13,007	2,621
Glyoxal/Stärke	SO ₂ -Bindung mit Glyoxal; Stärke als Indikator	38	11,138	2,828
Glyoxal/potentiometr.	SO ₂ -Bindung mit Glyoxal; Platinelektrode	31	12,689	2,689
Glyoxal/MTT	SO ₂ -Bindung mit Glyoxal; Farbreaktion mit MTT	1	9,700	
k. A.	keine Verfahrensangabe	1	9,000	
	alle Verfahren	86	11,932	2,942

6.20 Freie Schweflige Säure [mg/L]

6.20.1 Laborergebnisse mit Destillations-, photometrischen Verfahren und FTIR

Bewertungsbasis sind die Ergebnisse aus Destillations- und photometrischen Verfahren

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Hinweis
01	LwK 6.2	30,0	2,75	1,04	
04	LwK 6.3	30,0	2,75	1,04	
05	LwK 6.2	26,6	-0,65	-0,25	
06	LwK 6.2	26,9	-0,35	-0,13	
09	LwK 6.2	27,5	0,25	0,09	
11	LwK 6.2	28,7	1,45	0,55	
13	LwK 6.3	34,0	6,75	2,55	
28	LwK 6.2	30,1	2,90	1,09	
41	LwK 6.3	29,0	1,75	0,66	
44	LwK 6.3	28,0	0,75		
				0,28	
45 46	LwK 6.3	32,0	4,75	1,79	
46	LwK 6.3	23,0	-4,25	-1,60	
47	LwK 6.3	29,0	1,75	0,66	
52	LwK 6.3	27,0	-0,25	-0,09	
54	LwK 6.4	24,0	-3,25	-1,23	
55	LwK 6.4	25,6	-1,65	-0,62	
56	LwK 6.4	23,3	-3,96	-1,49	
60	LwK 6.3	26,0	-1,25	-0,47	
94	LwK 6.3	24,5	-2,75	-1,04	
105	LwK 6.2	26,5	-0,75	-0,28	
124	LwK 6.3	29,0	1,75	0,66	
129	LwK 6.3	23,0	-4,25	-1,60	
143	LwK 6.3	27,0	-0,25	-0,09	
148	LwK 6.3	28,0	0,75	0,28	
202	LwK 6.5	34,9	7,65	2,89	
205				1,09	
	LwK 6.5	22,0	-5,25 0.45	-1,98	
206	LwK 6.5	36,7	9,45	3,56	
208	LwK 6.5	29,5	2,25	0,85	
209	LwK 6.5	30,0	2,75	1,04	
210	LwK 6.5	30,0	2,75	1,04	
211	LwK 6.5	29,0	1,74	0,66	
213	LwK 6.5	38,0	10,75	4,05	
219	LwK 6.5	27,0	-0,25	-0,09	
220	LwK 6.5	33,0	5,75	2,17	
225	LwK 6.5	34,0	6,75	2,55	
237	LwK 6.5	25,0	-2,25	-0,85	
243	LwK 6.5	33,0	5,75	2,17	
248	LwK 6.5	29,0	1,75	0,66	
250	LwK 6.5	29,0	1,75	0,66	
251	LwK 6.5	32,0	4,75	1,79	
257	LwK 6.5	40,4	13,15	4,96	
		40,4 41,4	14,12		/*\
261	LwK 6.5			5,33	(*)
262	LwK 6.5	33,0	5,75	2,17	
263	LwK 6.5	36,0	8,75	3,30	/+\
264	LwK 6.5	43,0	15,75	5,94	(*)
265	LwK 6.5	25,0	-2,25	-0,85	
277	LwK 6.5	30,0	2,75	1,04	
278	LwK 6.5	34,0	6,75	2,55	
279	LwK 6.5	29,0	1,75	0,66	
280	LwK 6.5	35,0	7,75	2,92	
328	LwK 6.5	33,1	5,83	2,20	
330	LwK 6.5	18,0	-9,25	-3,49	
337	LwK 6.5	25,0	-2,25	-0,85	

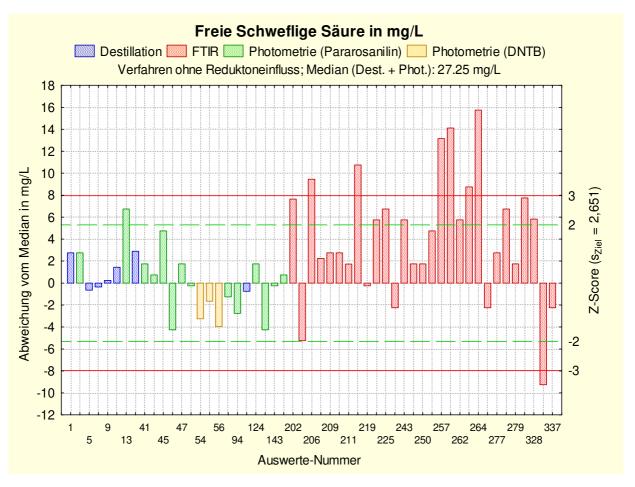
Die mit (*) markierten Werte weichen um mehr als 50 % vom Median der herkömmlichen Werte ab.

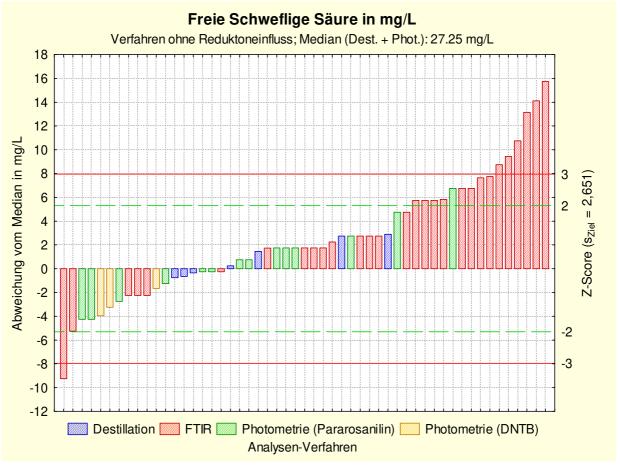
6.20.2 Laborergebnisse (jodometrische Verfahren einschließlich Reduktone)

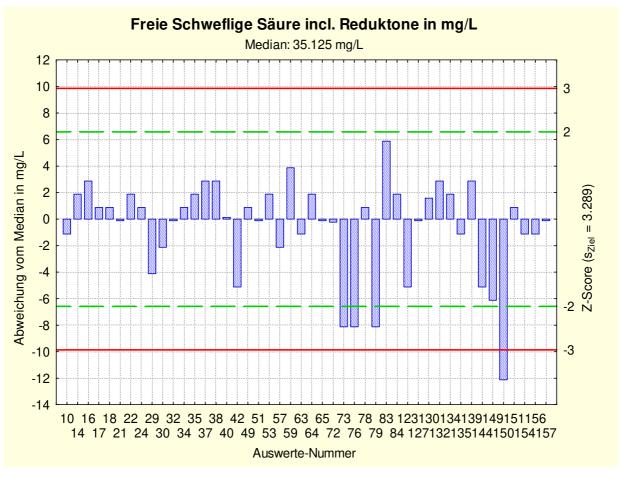
ugo					,
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Hinweis
10	Redox incl.	34,0	-1,13	-0,34	
14	LwK 6.1(incl.Red.)	37,0	1,88	0,57	
16	LwK 6.1(incl.Red.)	38,0	2,88	0,87	
17	LwK 6.1(incl.Red.)	36,0	0,88	0,27	
18	LwK 6.1(incl.Red.)	36,0	0,88	0,27	
21	LwK 6.1(incl.Red.)	35,0	-0,13	-0,04	
22	LwK 6.1(incl.Red.)	37,0	1,88	0,57	
24	LwK 6.1(incl.Red.)	36,0	0,88	0,27	
29	LwK 6.1(incl.Red.)	31,0	-4,13	-1,25	
30	LwK 6.1(incl.Red.)	33,0	-2,13	-0.65	
32	LwK 6.1(incl.Red.)	35,0	-0,13	-0,04	
34	LwK 6.1(incl.Red.)	36,0	0,88	0,27	
35	LwK 6.1(incl.Red.)	37,0	1,88	0,57	
37	LwK 6.1(incl.Red.)	38,0	2,88	0,87	
38	LwK 6.1(incl.Red.)	38,0	2,88	0,87	
40	LwK 6.1(incl.Red.)	35,3	0,13	0,04	
42	LwK 6.1(incl.Red.)	30,0	-5,13	-1,56	
49	LwK 6.1(incl.Red.)	36,0	0,88	0,27	
51	LwK 6.1(incl.Red.)	35,0	-0,13	-0,04	
53	LwK 6.1(incl.Red.)	37,0	1,88	0,57	
57	LwK 6.1(incl.Red.)	33,0	-2,13	-0,65	
59	Redox incl.	39,0	3,88	1,18	
63	LwK 6.1(incl.Red.)	34,0	-1,13	-0,34	
64	LwK 6.1(incl.Red.)	37,0	1,88	0,57	
65	LwK 6.1(incl.Red.)	35,0	-0,13	-0,04	
72	LwK 6.1(incl.Red.)	34,9	-0,23	-0,07	
73	LwK 6.1 (incl.Red.)	27,0	-8,13	-2,47	
76	Redox incl.	27,0	-8,13	-2,47	
78	LwK 6.1(incl.Red.)	36,0	0,88	0,27	
79	LwK 6.1(incl.Red.)	27,0	-8,13	-2,47	
83	Redox incl.	41,0	5,88	1,79	
84	Redox incl.	37,0	1,88	0,57	
87	LwK 6.1(incl.Red.)	31,0	-4,13	-1,25	
110	LwK 6.1(incl.Red.)	33,0	-2,13	-0,65	
123	LwK 6.1(incl.Red.)	30,0	-5,13	-1,56	
127	LwK 6.1(incl.Red.)	35,0	-0,13	-0,04	
130	LwK 6.1(incl.Red.)	36,7	1,58	0,48	
132	LwK 6.1(incl.Red.)	38,0	2,88	0,87	
134	LwK 6.1(incl.Red.)	37,0	1,88	0,57	
135	LwK 6.1(incl.Red.)	34,0	-1,13	-0,34	
139	LwK 6.1(incl.Red.)	38,0	2,88	0,87	
144	LwK 6.1(incl.Red.)	30,0	-5,13	-1,56	
149	LwK 6.1(incl.Red.)	29,0	-6,13	-1,86	
150	LwK 6.1(incl.Red.)	23,0	-12,13	-3,69	
151	LwK 6.1(incl.Red.)	36,0	0,88	0,27	
154	LwK 6.1(incl.Red.)	34,0	-1,13	-0,34	
156	LwK 6.1(incl.Red.)	34,0	-1,13	-0,34	
157	LwK 6.1(incl.Red.)	35,0	-0,13	-0,04	

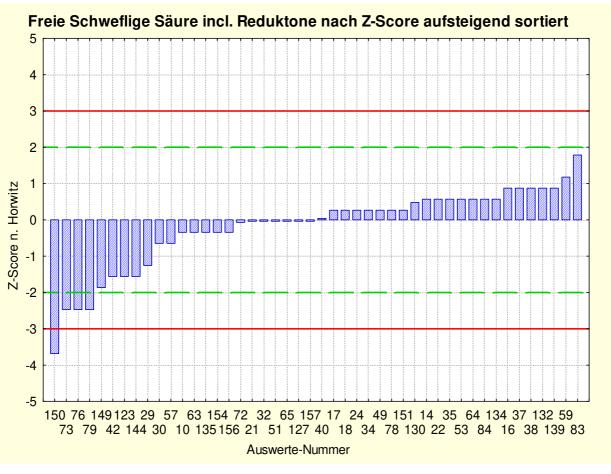
6.20.3 Angaben zu den Analyseverfahren

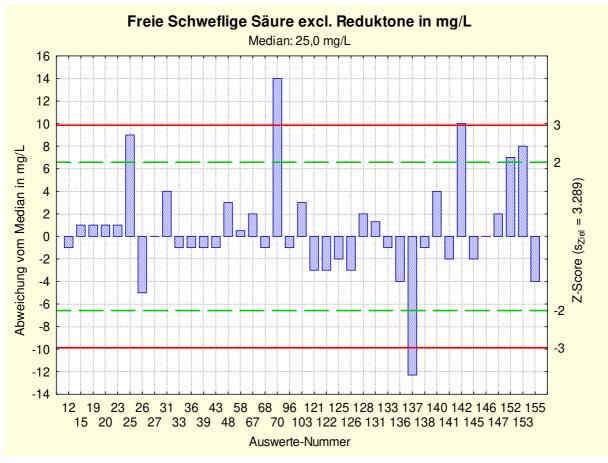
Verfahren	Verfahrensbeschreibung	Anzahl	Robustes Mittel	Robuste StdAbw.
Redox (incl. Red.) LwK 6.1	Jodometrische Bestimmung mit pH-Meter im mV-Modus und der elektrometr. Endpunktbest. ohne Abzug der Reduktone Direkte jodometrische Titration OIV-MA-AS323-04B	5	35,65	6,070
(incl. Red.)	ohne Abzug der Reduktone	41	34,86	2,734
	alle jodometrischen Verfahren einschließlich Reduktone	46	34,93	2,988
(excl. Red.)	mit Abzug der Reduktone	39	25,27	3,335
LwK 6.2	Methode n. Paul bzw. OIV-MA-AS323-04A	7	27,95	1,610
LwK 6.3	Pararosanilinmethode (auch automatisiert)	14	27,73	3,227
LwK 6.4	photometrisch mit DNTB (auch automatisiert)	3	24,29	1,329
	Destillations- und photometrische Verfahren	24	27,34	2,895
LwK 6.5	Fourier-Transform-Infrarotspektroskopie (Gasphase)	29	31,64	5,401

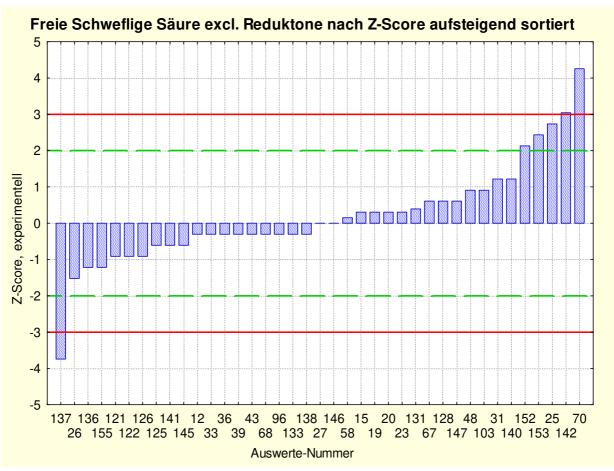

6.20.4 Laborergebnisse (jodometrische Verfahren ausschließlich Reduktone)


Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score S _{H incl. Red.}	Hinweis
12	LwK 6.1(excl.Red.)	24,0	-1,00	-0,41	-0,30	
15	LwK 6.1(excl.Red.)	26,0	1,00	0,41	0,30	
19	LwK 6.1(excl.Red.)	26,0	1,00	0,41	0,30	
20	LwK 6.1(excl.Red.)	26,0	1,00	0,41	0,30	
23	LwK 6.1(excl.Red.)	26,0	1,00	0,41	0,30	
25	LwK 6.1(excl.Red.)	34,0	9,00	3,65	2,74	
26	LwK 6.1(excl.Red.)	20,0	-5,00	-2,03	-1,52	
27	LwK 6.1(excl.Red.)	25,0	0,00	0,00	0,00	
31	LwK 6.1(excl.Red.)	29,0	4,00	1,62	1,22	
33	LwK 6.1(excl.Red.)	24,0	-1,00	-0,41	-0,30	
36	LwK 6.1(excl.Red.)	24,0	-1,00	-0,41	-0,30	
39	LwK 6.1(excl.Red.)	24,0	-1,00	-0,41	-0,30	
43	LwK 6.1(excl.Red.)	24,0	-1,00	-0,41	-0,30	
48	LwK 6.1(excl.Red.)	28,0	3,00	1,22	0,91	
58	LwK 6.1(excl.Red.)	25,5	0,50	0,20	0,15	
65	LwK 6.1(incl.Red.)	35,0	10,00	4,06	3,04	
67	LwK 6.1(excl.Red.)	27,0	2,00	0,81	0,61	
68	LwK 6.1(excl.Red.)	24,0	-1,00	-0,41	-0,30	
70	LwK 6.1(excl.Red.)	39,0	14,00	5,68	4,26	
96	LwK 6.1(excl.Red.)	24,0	-1,00	-0,41	-0,30	
103	LwK 6.1(excl.Red.)	28,0	3,00	1,22	0,91	
121	LwK 6.1(excl.Red.)	22,0	-3,00	-1,22	-0,91	
122	LwK 6.1(excl.Red.)	22,0	-3,00	-1,22	-0,91	
125	LwK 6.1(excl.Red.)	23,0	-2,00	-0,81	-0,61	
126	LwK 6.1(excl.Red.)	22,0	-3,00	-1,22	-0,91	
128	LwK 6.1(excl.Red.)	27,0	2,00	0,81	0,61	
131	LwK 6.1(excl.Red.)	26,3	1,30	0,53	0,40	
133	LwK 6.1(excl.Red.)	24,0	-1,00	-0,41	-0,30	
136	LwK 6.1(excl.Red.)	21,0	-4,00	-1,62	-0,30 -1,22	
137	•	21,0 12,7	-4,00 -12,30	-1,62 -4,99	-1,22 -3,74	
138	LwK 6.1(excl.Red.)					
140	LwK 6.1(excl.Red.) LwK 6.1(excl.Red.)	24,0 29,0	-1,00 4,00	-0,41	-0,30 1,22	
141			-2,00	1,62 -0,81	-0,61	
	LwK 6.1(excl.Red.)	23,0				
142	LwK 6.1(excl.Red.)	35,0	10,00	4,06	3,04	
145	LwK 6.1(excl.Red.)	23,0	-2,00	-0,81	-0,61	
146	LwK 6.1(excl.Red.)	25,0	0,00	0,00	0,00	
147	LwK 6.1(excl.Red.)	27,0	2,00	0,81	0,61	
152	LwK 6.1(excl.Red.)	32,0	7,00	2,84	2,13	
153	LwK 6.1(excl.Red.)	33,0	8,00	3,25	2,43	
155	LwK 6.1(excl.Red.)	21,0	-4,00	-1,62	-1,22	


 $s_{H\,incl.\,Red.} : Zielstandardabweichung \,\, berechnet \,\, nach \,\, Horwitz \,\, aus \,\, dem \,\, Median \,\, der \,\, Werte \,\, einschließlich \,\, Reduktone$


6.20.5 Deskriptive Ergebnisse


Ergebnisse für	Destillation,	jodom	etrisch
Freie Schweflige Säure in mg/L	Photometrie	Redu	ktone
		inclusive	exclusive
	alle Daten	alle Daten	alle Daten
Gültige Werte	24	46	39
Minimalwert	23,0	23,0	12,7
Mittelwert	27,45	34,52	25,63
Median	27,25	35,13	25,00
Maximalwert	34,0	41,0	39,0
Standardabweichung (s _L)	2,787	3,652	4,585
Standardfehler des Mittelwertes (u _M)	0,569	0,539	0,734
Zielstandardabweichung n. Horwitz (s _H)	2,651	3,289	2,464
- n. Horwitz incl. Reduktone $(s_{H incl. Red.})$			3,289
Horrat-Wert (s _L /s _H)	1,05	1,11	1,86
Quotient (s _L /s _{exp})			1,39
Quotient (u _M /s _H)	0,21	0,16	0,30
Quotient (u _M /s _{exp herk.})			0,22



6.21 Gesamte Schweflige Säure [mg/L]

6.21.1 Laborergebnisse

Bewertungsbasis sind die Ergebnisse aus Destillationsverfahren; verbindliche Bewertung

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
01	LwK 7.3	163,0	1,70	0,14	0,32	
04	LwK 7.7	164,0	2,70	0,22	0,50	
05	LwK 7.3	161,6	0,30	0,02	0,06	
06	LwK 7.3	166,4	5,10	0,42	0,95	
09	LwK 7.3	157,0	-4,30	-0,36	-0,80	
10	LwK 7.4.2	159,0	-2,30	-0,19	-0,43	
11	LwK 7.3	170,0	8,70	0,72	1,62	
12	LwK 7.3	160,0	-1,30	-0,11	-0,24	
13	LwK 7.4.1	169,0	7,70	0,64	1,44	
14 15	LwK 7.4.2	151,0	-10,30	-0,86	-1,92	
16	LwK 7.5.1(excl. Red.) LwK 7.5.1(incl. Red.)	161,0 167,0	-0,30 5,70	-0,02 0,47	-0,06 1,06	
17	LwK 7.5.1(incl. Red.)	142,0	-19,30	-1,61	-3,60	
18		158,0	-3,30	-0,27	-0,62	
20	LwK 7.5.1(incl. Red.) LwK 7.4.2	157,0	-3,30 -4,30	-0,27	-0,82	
21	LwK 7.4.2 LwK 7.4.2	163,0	1,70	0,14	0,32	
22	LwK 7.4.2 LwK 7.3	170,0	8,70	0,14	1,62	
23	LwK 7.3 LwK 7.4.2m	156,0	-5,30	-0,44	-0,99	
24	LwK 7.4.2111 LwK 7.5.1(incl. Red.)	166,0	4,70	0,39	0,88	
25 25	LwK 7.5.1(incl. Red.)	162,0	0,70	0,06	0,38	
26	LwK 7.4.2	150,0	-11,30	-0,94	-2,11	
27	LwK 7.5.1(excl. Red.)	150,0	-11,30	-0,94	-2,11	
28	LwK 7.3	173,1	11,80	0,98	2,20	
29	LwK 7.5.1(incl. Red.)	165,0	3,70	0,31	0,69	
30	LwK 7.4.1	159,0	-2,30	-0,19	-0,43	
31	LwK 7.4.1	166,0	4,70	0,39	0,48	
32	LwK 7.5.1(incl. Red.)	150,0	-11,30	-0,94	-2,11	
33	LwK 7.5.1(excl. Red.)	163,0	1,70	0,14	0,32	
34	LwK 7.5.1(incl. Red.)	165,0	3,70	0,31	0,69	
35	LwK 7.5.1(incl. Red.)	163,0	1,70	0,14	0,32	
36	LwK 7.5.1(excl. Red.)	164,0	2,70	0,22	0,50	
37	LwK 7.4.1	148,0	-13,30	-1,11	-2,48	
38	LwK 7.7	165,0	3,70	0,31	0,69	
39	LwK 7.5.1(excl. Red.)	160,0	-1,30	-0,11	-0,24	
40	LwK 7.4.1	163,0	1,70	0,14	0,32	
41	LwK 7.6	163,0	1,70	0,14	0,32	
42	LwK 7.4.2	153,0	-8,30	-0,69	-1,55	
43	LwK 7.5.1(excl. Red.)	168,0	6,70	0,56	1,25	
44	LwK 7.4.1	165,0	3,70	0,31	0,69	
45	LwK 7.7	177,0	15,70	1,31	2,93	
46	LwK 7.7	165,0	3,70	0,31	0,69	
47	LwK 7.4.2	155,0	-6,30	-0,52	-1,18	
48	LwK 7.4.2	171,5	10,20	0,85	1,90	
49	LwK 7.4.2	151,0	-10,30	-0,86	-1,92	
51	LwK 7.5.2(incl. Red.)	158,0	-3,30	-0,27	-0,62	
52	LwK 7.7	164,0	2,70	0,22	0,50	
53	LwK 7.4.2	164,0	2,70	0,22	0,50	
54	LwK 7.7	165,0	3,70	0,31	0,69	
55	LwK 7.7	167,7	6,40	0,53	1,19	
56	LwK 7.4.2	151,0	-10,30	-0,86	-1,92	
57	LwK 7.4.2	160,0	-1,30	-0,11	-0,24	
58	LwK 7.5.1(excl. Red.)	165,9	4,60	0,38	0,86	
59	LwK 7.5.2(incl. Red.)	177,0	15,70	1,31	2,93	
60	LwK 7.3	164,0	2,70	0,22	0,50	
63	LwK 7.5.1(incl. Red.)	167,0	5,70	0,47	1,06	
64	LwK 7.5.3(incl. Red.)	162,0	0,70	0,06	0,13	
65	LwK 7.5.1(incl. Red.)	165,0	3,70	0,31	0,69	
67	LwK 7.5.3(excl. Red.)	151,0	-10,30	-0,86	-1,92	
68	LwK 7.5.1(excl. Red.)	168,0	6,70	0,56	1,25	
70	LwK 7.5.1(incl. Red.)	173,0	11,70	0,97	2,18	
72	LwK 7.5.1(incl. Red.)	137,6	-23,70	-1,97	-4,42	
73 76	LwK 7.5.3(incl. Red.) LwK 7.5.1(incl. Red.)	162,0 158,0	0,70 -3,30	0,06	0,13	
	LIMIK (h Tupol Dod)	1601	-3 30	-0,27	-0,62	

Fortsetzung: Laborergebnisse (Bewertungsbasis: Destillationsverfahren)

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
78	LwK 7.4.1	161,0	-0,30	-0,02	-0,06	
79	LwK 7.5.3(incl. Red.)	162,0	0,70	0,06	0,13	
83	Redox incl.	156,0	-5,30	-0,44	-0,99	
84	Redox incl.	154,0	-7,30	-0,61	-1,36	
87	LwK 7.5.1(incl. Red.)	175,0	13,70	1,14	2,56	
90	LwK 7.4.2	150,0	-11,30	-0,94	-2,11	
94	LwK 7.6	165,0	3,70	0,31	0,69	
95	LwK 7.4.2	163,3	2,00	0,17	0,37	
96	LwK 7.5.1(excl. Red.)	158,0	-3,30	-0,27	-0,62	
97	LwK 7.3	170,5	9,20	0,77	1,72	
98	LwK 7.4.2	155,0	-6,30	-0,52	-1,18	
99	LwK 7.4.2	150,0	-11,30	-0,94	-2,11	
101	LwK 7.5.1(incl. Red.)	160,0	-1,30	-0,11	-0,24	
103	LwK 7.5.1 (excl. Red.)	156,0	-5,30	-0,44	-0,99	
105	LwK 7.3 `	165,0	3,70	0,31	0,69	
107	LwK 7.4.2	158,0	-3,30	-0,27	-0,62	
110	LwK 7.5.1(incl. Red.)	174,0	12,70	1,06	2,37	
121	LwK 7.5.1(excl. Red.)	155,0	-6,30	-0,52	-1,18	
122	LwK 7.3	166,0	4,70	0,32	0,88	
123	LwK 7.5.1(incl. Red.)	139,0	-22,30	-1,86	-4,16	
124	LwK 7.6	173,0	11,70	0,97	2,18	
125	LwK 7.5.2(excl. Red.)	154,0	-7,30	-0,61	-1,36	
126						
	LwK 7.5.1(excl. Red.)	160,0	-1,30	-0,11	-0,24	
127	LwK 7.5.1(incl. Red.)	160,0	-1,30	-0,11	-0,24	
128	LwK 7.5.1(excl. Red.)	144,0	-17,30	-1,44	-3,23	
129	LwK 7.4.2	164,0	2,70	0,22	0,50	
130	LwK 7.4.2m	165,0	3,70	0,31	0,69	
131	LwK 7.4.1	169,7	8,40	0,70	1,57	
132	FTIR(direkt)	166,0	4,70	0,39	0,88	
133	LwK 7.5.1(excl. Red.)	157,0	-4,30	-0,36	-0,80	
134	LwK 7.5.1(incl. Red.)	164,0	2,70	0,22	0,50	
135	LwK 7.5.1(incl. Red.)	166,0	4,70	0,39	0,88	
136	LwK 7.5.1(excl. Red.)	150,0	-11,30	-0,94	-2,11	
137	LwK 7.5.1(excl. Red.)	144,6	-16,70	-1,39	-3,12	
138	LwK 7.4.2	155,0	-6,30	-0,52	-1,18	
139	LwK 7.5.1(incl. Red.)	177,0	15,70	1,31	2,93	
140	LwK 7.5.2(excl. Red.)	161,0	-0,30	-0,02	-0,06	
141	LwK 7.5.1 (excl. Red.)	147,0	-14,30	-1,19	-2,67	
142	LwK 7.5.1(excl. Red.)	160,0	-1,30	-0,11	-0,24	
143	LwK 7.7	162,5	1,20	0,10	0,22	
144	LwK 7.5.1(incl. Red.)	143,0	-18,30	-1,52	-3,42	
145	LwK 7.5.1(excl. Red.)	146,0	-15,30	-1,27	-2,86	
146	LwK 7.4.2	156,0	-5,30	-0,44	-0,99	
147	LwK 7.4.2	163,0	1,70	0,14	0,32	
148	LwK 7.4.2 LwK 7.4.1	162,0	0,70	0,14	0,32	
149					0,13	
	LwK 7.5.1(incl. Red.)	171,0	9,70	0,81	1,81	
150	LwK 7.5.1(incl. Red.)	150,0	-11,30	-0,94	-2,11	
151	LwK 7.4.1	143,0	-18,30	-1,52	-3,42	
152	LwK 7.4.2	157,0	-4,30	-0,36	-0,80	
153	LwK 7.5.1(excl. Red.)	156,0	-5,30	-0,44	-0,99	
154	LwK 7.5.1(incl. Red.)	150,0	-11,30	-0,94	-2,11	
155	LwK 7.4.1	164,0	2,70	0,22	0,50	
156	LwK 7.7	164,0	2,70	0,22	0,50	
157	LwK 7.4.1	154,0	-7,30	-0,61	-1,36	
202	LwK 7.8	157,3	-4,00	-0,33	-0,75	
205	LwK 7.8	148,0	-13,30	-1,11	-2,48	
206	LwK 7.8	162,3	1,00	0,08	0,19	
207	LwK 7.8	134,0	-27,30	-2,27	-5,10	(***)
208	LwK 7.8	152,0	-9,30	-0,77	-1,74	` '
209	LwK 7.8	156,0	-5,30	-0,44	-0,99	
210	LwK 7.8	171,0	9,70	0,81	1,81	
211	LwK 7.8	183,2	21,90	1,82	4,09	
	LwK 7.8	170,0	8,70	0,72	1,62	
213	IWN /.O					

Mit (***) gekennzeichnete Werte weichen um mehr als 5 Z-Score-Einheiten vom maßgeblichen Median ab. Für Ergebnisse von FTIR-Verfahren sind die Z-Score_{Horwitz} gültig. Die Z-Score_{exper.} in grauer Schrift sind nur zur Information wiedergegeben.

Stand: 02.03.2021 Wiss. Arbeitsausschuss FTIR-Kalibrierung Seite 125 von 136

Fortsetzung: Laborergebnisse (Bewertungsbasis: Destillationsverfahren)

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
220	LwK 7.8	162,0	0,70	0,06	0,13	
225	LwK 7.8	164,0	2,70	0,22	0,50	
237	LwK 7.8	176,0	14,70	1,22	2,74	
243	LwK 7.8	147,0	-14,30	-1,19	-2,67	
248	LwK 7.8	150,0	-11,30	-0,94	-2,11	
250	LwK 7.8	158,0	-3,30	-0,27	-0,62	
251	LwK 7.8	164,0	2,70	0,22	0,50	
257	LwK 7.8	148,0	-13,30	-1,11	-2,48	
261	LwK 7.8	174,5	13,21	1,10	2,47	
262	LwK 7.8	159,5	-1,80	-0,15	-0,34	
263	LwK 7.8	154,0	-7,30	-0,61	-1,36	
264	LwK 7.8	167,0	5,70	0,47	1,06	
265	LwK 7.8	138,0	-23,30	-1,94	-4,35	
277	LwK 7.8	159,0	-2,30	-0,19	-0,43	
278	LwK 7.8	173,0	11,70	0,97	2,18	
279	LwK 7.8	157,0	-4,30	-0,36	-0,80	
280	LwK 7.8	160,0	-1,30	-0,11	-0,24	
328	LwK 7.8	127,5	-33,84	-2,82	-6,32	(***)
330	LwK 7.8	128,0	-33,30	-2,77	-6,22	(***)
337	LwK 7.8	176,0	14,70	1,22	2,74	. ,

Mit (***) gekennzeichnete Werte weichen um mehr als 5 Z-Score-Einheiten vom maßgeblichen Median ab. Für Ergebnisse von FTIR-Verfahren sind die Z-Score_{Horwitz} gültig. Die Z-Score_{exper.} in grauer Schrift sind nur zur Information wiedergegeben.

6.21.2 Laborergebnisse (jodometrische Verfahren einschließlich Reduktone)

Bewertungsbasis sind die Ergebnisse jodometrischer Bestimmung einschließlich Reduktone Bewertung nur zur Information

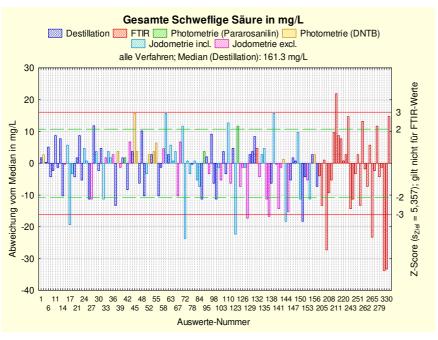
Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
16	LwK 7.5.1(incl. Red.)	167,0	5,00	0,41	0,93	
17	LwK 7.5.1(incl. Red.)	142,0	-20,00	-1,66	-3,73	
18	LwK 7.5.1(incl. Red.)	158,0	-4,00	-0,33	-0,75	
24	LwK 7.5.1(incl. Red.)	166,0	4,00	0,33	0,75	
25	LwK 7.5.1 (incl. Red.)	162,0	0,00	0,00	0,00	
29	LwK 7.5.1(incl. Red.)	165,0	3,00	0,25	0,56	
32	LwK 7.5.1 (incl. Red.)	150,0	-12,00	-1,00	-2,24	
34	LwK 7.5.1 (incl. Red.)	165,0	3,00	0,25	0,56	
35	LwK 7.5.1 (incl. Red.)	163,0	1,00	0,08	0,19	
51	LwK 7.5.2(incl. Red.)	158,0	-4,00	-0,33	-0,75	
59	LwK 7.5.2(incl. Red.)	177,0	15,00	1,24	2,80	
63	LwK 7.5.1(incl. Red.)	167,0	5,00	0,41	0,93	
64	LwK 7.5.3(incl. Red.)	162,0	0,00	0,00	0,00	
65	LwK 7.5.1(incl. Red.)	165,0	3,00	0,25	0,56	
70	LwK 7.5.1(incl. Red.)	173,0	11,00	0,91	2,05	
72	LwK 7.5.1(incl. Red.)	137,6	-24,40	-2,02	-4,55	
73	LwK 7.5.3(incl. Red.)	162,0	0,00	0,00	0,00	
76	LwK 7.5.1(incl. Red.)	158,0	-4,00	-0,33	-0,75	
79	LwK 7.5.3(incl. Red.)	162,0	0,00	0,00	0,00	
83	Redox incl.	156,0	-6,00	-0,50	-1,12	
84	Redox incl.	154,0	-8,00	-0,66	-1,49	
87	LwK 7.5.1(incl. Red.)	175,0	13,00	1,08	2,43	
101	LwK 7.5.1(incl. Red.)	160,0	-2,00	-0,17	-0,37	
110	LwK 7.5.1(incl. Red.)	174,0	12,00	1,00	2,24	
123	LwK 7.5.1(incl. Red.)	139,0	-23,00	-1,91	-4,29	
127	LwK 7.5.1(incl. Red.)	160,0	-2,00	-0,17	-0,37	
134	LwK 7.5.1(incl. Red.)	164,0	2,00	0,17	0,37	
135	LwK 7.5.1(incl. Red.)	166,0	4,00	0,33	0,75	
139	LwK 7.5.1(incl. Red.)	177,0	15,00	1,24	2,80	
144	LwK 7.5.1(incl. Red.)	143,0	-19,00	-1,58	-3,55	
149	LwK 7.5.1(incl. Red.)	171,0	9,00	0,75	1,68	
150	LwK 7.5.1(incl. Red.)	150,0	-12,00	-1,00	-2,24	
154	LwK 7.5.1(incl. Red.)	150,0	-12,00	-1,00	-2,24	

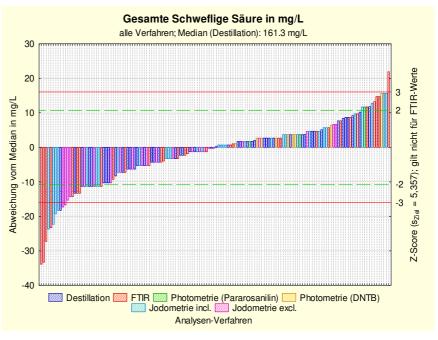
6.21.3 Laborergebnisse (jodometrische Verfahren ausschließlich Reduktone)

Bewertungsbasis sind die Ergebnisse jodometrischer Bestimmung ausschließlich Reduktone Bewertung nur zur Information

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
15	LwK 7.5.1(excl. Red.)	161,0	4,00	0,34	0,75	
27	LwK 7.5.1 (excl. Red.)	150,0	-7,00	-0,60	-1,31	
33	LwK 7.5.1 (excl. Red.)	163,0	6,00	0,51	1,12	
36	LwK 7.5.1(excl. Red.)	164,0	7,00	0,60	1,31	
39	LwK 7.5.1(excl. Red.)	160,0	3,00	0,26	0,56	
43	LwK 7.5.1(excl. Red.)	168,0	11,00	0,94	2,05	
58	LwK 7.5.1(excl. Red.)	165,9	8,90	0,76	1,66	
67	LwK 7.5.3(excl. Red.)	151,0	-6,00	-0,51	-1,12	
68	LwK 7.5.1(excl. Red.)	168,0	11,00	0,94	2,05	
96	LwK 7.5.1(excl. Red.)	158,0	1,00	0,09	0,19	
103	LwK 7.5.1(excl. Red.)	156,0	-1,00	-0,09	-0,19	
121	LwK 7.5.1(excl. Red.)	155,0	-2,00	-0,17	-0,37	
125	LwK 7.5.2(excl. Red.)	154,0	-3,00	-0,26	-0,56	
126	LwK 7.5.1(excl. Red.)	160,0	3,00	0,26	0,56	
128	LwK 7.5.1(excl. Red.)	144,0	-13,00	-1,11	-2,43	
133	LwK 7.5.1(excl. Red.)	157,0	0,00	0,00	0,00	
136	LwK 7.5.1(excl. Red.)	150,0	-7,00	-0,60	-1,31	
137	LwK 7.5.1(excl. Red.)	144,6	-12,40	-1,06	-2,31	
140	LwK 7.5.2(excl. Red.)	161,0	4,00	0,34	0,75	
141	LwK 7.5.1(excl. Red.)	147,0	-10,00	-0,85	-1,87	
142	LwK 7.5.1(excl. Red.)	160,0	3,00	0,26	0,56	
145	LwK 7.5.1(excl. Red.)	146,0	-11,00	-0,94	-2,05	
153	LwK 7.5.1(excl. Red.)	156,0	-1,00	-0,09	-0,19	

6.21.4 Angaben zu den Analyseverfahren


Code	Verfahrensbeschreibung	Anzahl	Robustes Mittel	Robuste StdAbw.
LwK 7.3	Methode n. Paul bzw. OIV-MA-AS323-04A	12	165,60	5,297
LwK 7.4.1	Destillationsmethode n. Dr. Jakob	12	161,06	7,613
LwK 7.4.2	Destillationsmethode n. Dr. Rebelein	22	156,87	5,989
LwK 7.4.2m	Destillationsmethode n. Dr. Rebelein modifiziert	2	160,50	7,217
	alle Destillationsverfahren	48	160,34	7,392
LwK 7.5.1 (incl. Red.) *)	jodometrisch n. einf. Hydrolyse ohne Reduktonabzug	24	160,00	10,521
LwK 7.5.2 (incl. Red.)	jodometrisch n. dopp. Hydrolyse ohne Reduktonabzug	2	167,50	15,235
LwK 7.5.3(incl. Red.)	Hydrolyse n. Dr. Rebelein ohne Reduktonabzug	3	162,00	0,000
Redox incl.	Elektrometrische Bestimmung mit ph-Meter im mV-Modus			
	und Redoxelektrode ohne Reduktonabzug	2	155,00	1,604
	alle jodometrischen Verfahren ohne Reduktonabzug	32	160,98	9,412
LwK 7.5.1 (excl. Red.)	jodometrisch n. einf. Hydrolyse mit Reduktonabzug	20	156,68	8,597
LwK 7.5.2(excl. Red.)	jodometrisch n. dopp. Hydrolyse mit Reduktonabzug	2	157,50	5,613
LwK 7.5.3 (excl. Red.)	Hydrolyse n. Dr. Rebelein mit Reduktonabzug	1	151,00	
	alle jodometrischen Verfahren mit Reduktonabzug	23	156,51	8,191
LwK 7.6	Pararosanilinverfahren	3	166,48	4,996
LwK 7.7	DNTB-Verfahren (z. B. FOSS FIAStar)	9	165,04	1,957
LwK 7.8	Fourier-Transform-Infrarotspektroskopie in der Gasphase	30	158,94	13,576
FTIR(direkt)	Fourier-Transform-Infrarotspektroskopie in der Flüssigkeit	1	166,00	


^{*)} Berechnungen ohne Auswertenummer 87 (verspäteter Eingang)

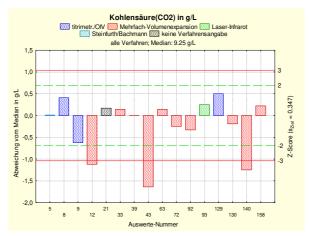
6.21.5 Deskriptive Ergebnisse

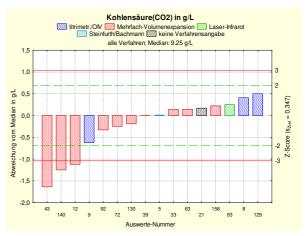
Ergebnisse für Gesamte Schweflige Säure [mg/L]	Destillation		, Reduktone
alle Daten		$inclusive^{^{\star)}}$	exclusive
Gültige Werte	48	32	23
Minimalwert	143,0	137,6	144,0
Mittelwert	160,17	160,11	156,50
Median	161,30	162,00	157,00
Maximalwert	173,1	177,0	168,0
Standardabweichung (s _L)	6,988	10,270	7,240
Standardfehler des Mittelwertes (u _M)	1,009	1,815	1,510
Zielstandardabweichung n. Horwitz (s _H)	12,008	12,052	11,736
Zielstandardabweichung, experimentell (sexp)	5,357	5,357	5,357
Horrat-Wert (s _L /s _H)	0,58	0,85	0,62
Quotient (s _L /s _{exp})	1,30	1,92	1,35
Quotient (u _M /s _H)	0,08	0,15	0,13
Quotient (u _M /s _{exp herk.})	0,19	0,34	0,28

^{*)} Berechnungen ohne Auswertenummer 87 (verspäteter Eingang)

6.22 Kohlendioxid (CO₂) in g/L

6.22.1 Laborergebnisse


Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score Horwitz	Z-Score exper.	Hinweis
05	Steinfurth	9,26	0,010	0,03	0,03	
08	LwK 9.2 (OIV, titr.)	9,66	0,410	1,10	1,18	
09	LwK 9.2 (OIV, titr.)	8,63	-0,620	-1,66	-1,79	
12	LwK 9.3 (CarboQC)	8,13	-1,121	-2,99	-3,23	
21	k.A.	9,42	0,170	0,45	0,49	
33	LwK 9.3 (CarboQC)	9,39	0,140	0,37	0,40	
39	LwK 9.3 (CarboQC)	9,25	0,000	0,00	0,00	
43	LwK 9.3 (CarboQC)	7,61	-1,640	-4,38	-4,73	
63	LwK 9.3 (CarboQC)	9,39	0,140	0,37	0,40	
72	LwK 9.3 (CarboQC)	9,00	-0,250	-0,67	-0,72	
92	LwK 9.3 (CarboQC)	8,92	-0,330	-0,88	-0,95	
93	Laser-Infrarot(ACM LabCo)	9,50	0,250	0,67	0,72	
129	LwK 9.2 (OIV, titr.)	9,75	0,500	1,34	1,44	
130	LwK 9.3 (CarboQC)	9,06	-0,190	-0,51	-0,55	
140	LwK 9.3 (CarboQC)	8,00	-1,250	-3,34	-3,60	
158	LwK 9.3 (CarboQC)	9,47	0,220	0,59	0,63	


6.22.2 Deskriptive Ergebnisse

Ergebnisse für Kohlendioxid [g/L]	alle Daten
Gültige Werte	15
Minimalwert	7,61
Mittelwert	9,001
Median	9,250
Maximalwert	9,75
Standardabweichung (s _L)	0,640
Standardfehler des Mittelwertes	0,165
Zielstandardabweichung n. Horwitz (s _H)	0,374
Zielstandardabweichung, exp. (s _{exp herk.})	0,347
Horrat-Wert (s _L /s _H)	1,71
Quotient (s _L /s _{exp herk.})	1,85
Quotient (u _M /s _H)	0,44
Quotient (u _M /s _{exp})	0,48

6.22.3 Angaben zu den Analyseverfahren

Verfahren-Code	Verfahrensbeschreibung	Häufigkeit	Robustes Mittel	Robuste StdAbw.
LwK 9.2 (OIV, titr.)	OIV-MA-AS314-01	3	9,357	0,685
LwK 9.3 (CarboQC)	Mehrfach-Volumenexpansion	10	8,861	0,680
Laser-Infrarot(ACM LabCo)	Laser-Infrarotspektrometrie	1	9,500	
Steinfurth	Umrechnungsformel Fa. Steinfurth			
	aus Diagramm n. Bachmann	1	9,260	
k.A.	keine Verfahrensangabe	1	9,420	
Alle	alle Verfahren	16	9,094	0,568

Stand: 02.03.2021 Wiss. Arbeitsausschuss FTIR-Kalibrierung

6.23.1 Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score exper.	Hinweis
01	LwK 9.1 (Einstich)	5,3	-0,070	-0,28	
02	LwK 9.1 (Einstich)	5,5	0,100	0,41	
04	LwK 9.1 (Einstich)	5,3	-0,050	-0,20	
05	Steinfurth	5,1	-0,260	-1,06	
06	LwK 9.1 (Einstich)	5,6	0,250	1,02	
07	LwK 9.1 (Einstich)	4,7 5.0	-0,694 0,400	-2,82	
09 10	LwK 9.1 (Einstich) LwK 9.1 (Einstich)	5,0 5,6	-0,400 0,250	-1,63 1,02	
11	LwK 9.1 (Einstich)	5,5	0,200	0,81	
12	LwK 9.3 (Carbo QC)	4,6	-0,735	-2,99	
13	LwK 9.1 (geöffnet)	5,2	-0,150	-0,61	
14	LwK 9.1 (geöffnet)	5,3	-0,050	-0,20	
16	LwK 9.1 (Einstich)	5,0	-0,350	-1,42	
19	Laser-Infrarot(ACM LabCo)	6,4	1,050	4,27	
20	LwK 9.1 (geöffnet)	5,4	0,090	0,37	
22	LwK 9.1 (geöffnet)	5,6	0,250	1,02	
23	LwK 9.1 (geöffnet)	5,8	0,450	1,83	
24	LwK 9.1 (geöffnet)	5,2	-0,150	-0,61	
25 26	LwK 9.3 (Carbo QC)	5,7	0,340	1,38 1,22	
26 27	LwK 9.1 (geöffnet) LwK 9.1 (Einstich)	5,7 5,2	0,300 -0,150	-0,61	
28	LwK 9.1 (Einstich)	5,2 5,4	0,050	0,20	
30	LwK 9.1 (Einstich)	5,1	-0,250	-1,02	
31	LwK 9.1 (geöffnet)	5,7	0,350	1,42	
33	LwK 9.3 (Carbo QC)	5,6	0,260	1,06	
35	LwK 9.1 (Einstich)	5,3	-0,050	-0,20	
38	LwK 9.1 (geöffnet)	5,9	0,550	2,24	
39	LwK 9.3 (Carbo QC)	5,6	0,220	0,89	
40	LwK 9.1 (geöffnet)	5,5	0,150	0,61	
41	LwK 9.1 (Einstich)	4,4	-0,950	-3,86	
43 44	LwK 9.1 (geöffnet)	5,3	-0,050	-0,20 0,20	
44 45	LwK 9.1 (geöffnet) LwK 9.1 (geöffnet)	5,4 4,7	0,050 -0,650	-2,64	
46	LwK 9.1 (Einstich)	5,1	-0,250	-1,02	
47	LwK 9.1 (geöffnet)	5,0	-0,400	-1,63	
48	LwK 9.1 (Einstich)	5,8	0,450	1,83	
49	LwK 9.1 (geöffnet)	6,0	0,650	2,64	
51	LwK 9.1 (Einstich)	5,5	0,110	0,45	
52	LwK 9.1 (Einstich)	5,5	0,150	0,61	
54	LwK 9.1 (Einstich)	5,5 5,2	0,200	0,81	
55	LwK 9.1 (geöffnet)	5,2	-0,150	-0,61	
56	LwK 9.1 (Einstich)	5,3	-0,050	-0,20	
58 50	LwK 9.1 (Einstich)	5,5	0,160	0,65	
59 61	LwK 9.1 (Einstich) LwK 9.1 (Einstich)	5,2 5,6	-0,150 0,230	-0,61 0,93	
63	LwK 9.1 (Linstich) LwK 9.3 (Carbo QC)	5,0 5,7	0,230	1,50	
72	LwK 9.3 (Carbo QC)	6,3	1,000	4,07	
76	LwK 9.1 (Einstich)	5,3	-0,050	-0,20	
78	LwK 9.1 (Einstich)	4,7	-0,650	-2,64	
79	umgefüllt	3,6	-1,750	-7,11	(***)
80	LwK 9.1 (Einstich)	5,0	-0,350	-1,42	
92	LwK 9.3 (Carbo QC)	5,3	-0,070	-0,28	
93	Laser-Infrarot(ACM LabCo)	5,5	0,110	0,45	
121	Steinfurth	5,3	-0,060	-0,24	
122	LwK 9.1 (geöffnet)	5,4	0,050	0,20	
124	LwK 9.1 (geöffnet)	4,8	-0,550 0.100	-2,24	
125	LwK 9.1 (geöffnet)	5,3	-0,100 0.150	-0,41	
126 127	LwK 9.1 (geöffnet)	5,2	-0,150	-0,61	
127 128	LwK 9.1 (geöffnet) LwK 9.1 (Einstich)	5,6 5,0	0,250 -0,400	1,02 -1,63	
129	LwK 9.1 (Ellistich) LwK 9.1 (geöffnet)	5,0 5,2	-0,400	-0,57	
163	LWIT J. I (geomiet)	J,∠	-U, I 1 U	-0,01	

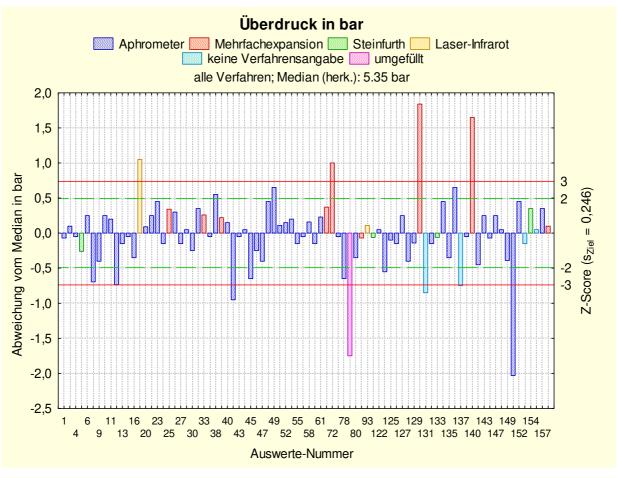
^(***) Dieser Wert weicht um mehr als 5-ZScore-Einheiten vom maßgeblichen Median ab und blieb bei der Auswertung unberücksichtigt.

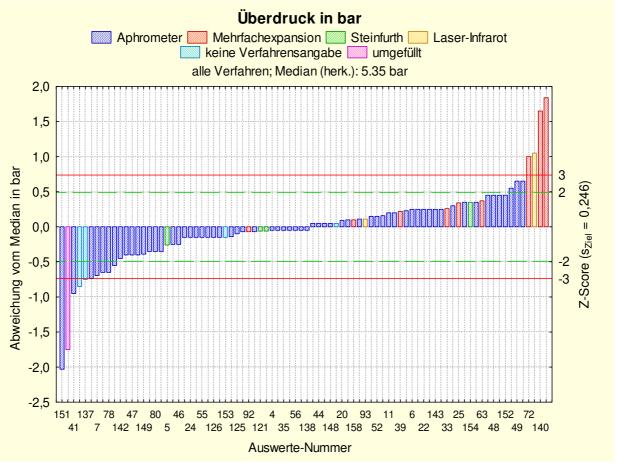
Probe FT20P01: Überdruck

Roter Methodenangabe: diese Angabe fehlte und wurde erst nach der Auswertung mitgeteilt.

Fortsetzung: Laborergebnisse

Auswerte-Nr.	Verfahren	Messwert	Abweichung	Z-Score exper.	Hinweis
130	LwK 9.3 (Carbo QC)	7,2	1,840	7,48	(**)
131	k. A.	4,5	-0,850	-3,46	
132	LwK 9.1 (Einstich)	5,2	-0,150	-0,61	
133	Steinfurth	5,3	-0,060	-0,24	
134	LwK 9.1 (geöffnet)	5,8	0,450	1,83	
135	LwK 9.1 (Einstich)	5,0	-0,350	-1,42	
136	LwK 9.1 (Einstich)	6,0	0,650	2,64	
137	k. A.	4,6	-0,750	-3,05	
138	LwK 9.1 (geöffnet)	5,3	-0,050	-0,20	
140	LwK 9.3 (Carbo QC)	7,0	1,650	6,71	(**)
142	LwK 9.1 (Einstich)	4,9	-0,450	-1,83	
143	LwK 9.1 (Einstich)	5,6	0,250	1,02	
145	LwK 9.1 (Einstich)	5,3	-0,070	-0,28	
147	LwK 9.1 (geöffnet)	5,6	0,250	1,02	
148	LwK 9.1 (Einstich)	5,4	0,050	0,20	
149	LwK 9.1 (geöffnet)	5,0	-0,390	-1,59	
151	LwK 9.1 (geöffnet)	3,3	-2,030	-8,25	(**)
152	LwK 9.1 (Einstich)	5,8	0,450	1,83	
153	k. A.	5,2	-0,150	-0,61	
154	Steinfurth	5,7	0,350	1,42	
156	k. A.	5,4	0,050	0,20	
157	LwK 9.1 (Einstich)	5,7	0,350	1,42	
158	LwK 9.3 (Carbo QC)	5,5	0,100	0,41	


^(**) Diese Werte wurden bei der wiederholten Berechnung nicht berücksichtigt.


6.23.2 Deskriptive Ergebnisse

Ergebnisse für Überdruck [bar] nur Werte mit gültiger Methodenangabe	alle Daten	ber. Daten
	70	70
Gültige Werte	79	76
Minimalwert	3,32	4,40
Mittelwert	5,387	5,370
Median	5,400	5,350
Maximalwert	7,19	6,40
Standardabweichung (s _L)	0,511	0,369
Standardfehler des Mittelwertes	0,057	0,042
Zielstandardabweichung n. Horwitz (s _H)		
Zielstandardabweichung, exp. (sexp)	0,246	0,246
Horrat-Wert (s _L /s _H)		
Quotient (s _L /s _{exp})	2,08	1,50
Quotient (u _M /s _H)		
Quotient (u _M /s _{exp})	0,23	0,17

6.23.3 Angaben zu den Analyseverfahren

Verfahren-Code	Verfahrensbeschreibung	Häufigkeit	Robustes	Robuste
			Mittel	StdAbw.
LwK 9.1 (Einstich)	Manometer-Messung im Einstichverfahren	36	5,308	0,336
LwK 9.1 (geöffnet)	Manometer-Messung an der geöffneten Probe	28	5,336	0,400
LwK 9.3 (Carbo QC)	Mehrfach-Volumenexpansion, z.B. CarboQC	9	5,958	0,753
Steinfurth	Messgerät der Fa. Steinfurth	4	5,334	0,272
Laser-Infrarot(ACM LabCo)	Laser-Infrarotspektrometrie	2	5,930	0,754
umgefüllt	Probe vor der Messung kalt umgefüllt.	1	3,600	
k. A.	keine Verfahrensangabe	4	4,925	0,502
Alle	alle Verfahren	84	5,350	0,384

U.ET OCIT	sorische Befunde
Auswerte- Nummer	Beschreibung des sensorischen Befundes und Bewertung der Bezeichnung
12	leicht reif / Ordentlich Kohlensäure / neutral / QZ 2,67
14	Farbe: hell gelb Geruch: reif , UTA Geschmack: breit ; laktisch, milde Säure, im Abgang UTA,
15	Aussehen: klar, hellfarbig, feinperlig; Geruch: dumpf, weinig; Geschmack: weich, schwach,wenig Extrakt, im Abgang kurz; leichter Böchser
16	Sauber, Aromen von heimischen Früchten (Apfel, Birne, Quitte), trotzdem recht neutral. Geschmacklich wirkt das Süße/Säure verhältnis unbalanciert. Es fehlt an Säure, trotzdem wirkt der Sekt im Abgang frisch. Die Perlage bleibt stabil und die Perlung an sich ist angenehm.
17	Der Wein ist soweit in Ordnung, es gibt kein Grund zur Beanstandung.
18	fehlerfrei, fruchtig
19	relativ weit entwickelt, reif, harmonisch, offen, in der Nase Aromen zwischen Riesling und Weißburgunder
21	leicht fruchtige Noten, sauber, fehlerfrei, typisch, harmonisch im Geschmack
22	leichter H₂S-Böckser und fortgeschrittene Alterung. Fehlende Frische durch fehlende Säure
23	Farbe: blass bis grüngelb, typisch und blank; Bukett: dezent aromatisch, leicht fruchtig, fehlerfrei; Geschmack: leicht aromatisch und fruchtig, dezent säurebetont, dezent bitter, fehlerfrei; Mousseux: feinperlig; Punktzahl der Sensorik: 2,9
24	die Probe ist für deutschen Sekt o.k.; etwas bitter, 2 Punkte nach 5 Punkteschema.
25	Bewertung: 2,67 Pkt
26	Standardqualität ohne besondere Note, leicht muffig, UTA!
27	Geruch nach grünem Apfel, Birne und schon eine leichte UTA-Note. Für Sekt relativ wenig Säure, deutliche Restsüße und grobperlige Perlage.
28	Der Sekt ist fehlerfrei in Geruch und Geschmack.
29	fruchtig, fehlerfrei, harmonisch, spritzig, viel Kohlensäure
31	Sensorik - o.k.
32	viel CO2, leichte Firne, gelbfruchtig, sauber, leicht Muskat
34	Aussehen: Klar, schwach gelb.Geruch: hefig, wenig frische Frucht, eher gereifte exotische Noten.Geschmack: Breit, gereift, wenig Frische.
35	Durch die Restsüße fruchtiger Sekt, Aromen von Pfirsich und Aprikosen Sekt hat schon leichte Reifenoten, etwas Haselnuss, ein wenig bitter im Abgang, das durch die Süße fast verdeckt ist.
36	3 Punkte, reintönig, leichte Zitrusnote, Aromenvielfalt fehlt etwas, aber ansonsten ist der Sekt in Ordnung
37	fruchtig, positiv, keine Fehltöne, schwach perlend
38 41	Apfel, Birne Zitrus, leichte Alterungstendenz, aber noch kein Grund zur Beanstandung. feinperlig, fruchtiger Geruch nach Birne, SO ₂ in der Nase verdeckt die Fruchtigkeit; im Geschmack
42	sehr neutral sehr schlank, etwas reif, Bohnerwachs dezent erkennbar; Qualitätszahl 1,5
43	In der Nase ist der Wein als eher reifer, älter in richtung verdobene Hefe zu beschreiben. Im Geschmack ist eine gewisse Bitter-Note zu schmecken mit einer stumpfen Belegung am Gaumen. Im Abgang wirkt der Sekt eher einfach und dünn. Tortz der genannten Eigenschaften ist der Schaumwein nicht unter 1,5 Punkte zu bewerten und erhält somit seine AP.Nr. Wir bewerten den Wein mit einer Punktzahl zwischen 1,67 und 1,83 nach 5 Punkteschema AP-Prüfung.
49	UA (untypische Alerungsnote)
52	Leichte Alterungsnote, jedoch Firne und kein UTA, feinperliges Mousseux, gelbfrüchtig. 2,5 Punkte.
55 56	Etwas verschlossen, leicht oxidativ; Mousseux feinperlig und lange anhaltend; 2,0 Punkte Klar und hellgelb mit einem Stich ins Grünliche. Reintönig in Geruch und Geschmack, dezente Fruchtigkeit, Süße/Säure harmonisch, überdeutliche Perlage bei 20°C Raumtemperatur, angenehme Mundfülle und Struktur.
57	fruchtig, schön moussierend, betont süß, mild im Abgang
59	sensorisch i. O.
63	Sekt. Gut, frisch und fruchtig. Leichter Typ
125	Flacher, ausdrucksloser Schaumwein
126	Geruch: leicht unsauber, muffig; Geschmack: ausgeglichen rund; Geruch:1,5 Punkte Geschmack:2,0 Punkte Harmonie:2,0 Punkte Qualitätszahl:1,83
129	Amtliche Prüfung: 2,0-2,0-2,0> 2,0
130	Aussehen: blank, hellgelb, mit grünen Reflexen; Geruch: leichte Petrolnote, leichte Akazienblüte; Geschmack: leicht brotig, einfach, klar, moussierend; Produkt von handelsüblicher Beschaffenheit
131	ohne Befund
132	Es handelt sich um einen durchschnittlichen Sekt. Schlank, dezente Aromatik, deutliche Säure. Die Frische hat etwas nachgelassen. Qualitätspunktzahl: 3,1
134	fruchtig, feinperlig, harmonisch, ohne Beanstandung
135	sauberer, fruchtiger, trockener Sekt; Qualitätszahl: 3,5
138	sauber, frisch, harmonisch 3,0 P.

Probe FT20P01: Sensorische Befunde

Auswerte- Nummer	Beschreibung des sensorischen Befundes und Bewertung der Bezeichnung
139	alt, muffig, Anflug von UTA,
140	Fehlerfrei, feines Mousseaux, Hauptrebsorten wahrscheinlich Riesling und Müller-Thurgau, deutliche Zitrusfrucht
141	leichter H2S Geruch, dezente Säure, nicht so spritzig, wenig Frucht
143	Leichte Reifenote -> beginnende UTA; ansonsten einfache und saubere Struktur im Geschmack; etwas bitter im Abgang.
144	ohne Beanstandungen
145	Sensorisch fehlerfrei, keine Beanstandung, Qualitätszahl: 2,67
146	Helles Gelb mit grünen Reflexen, dezenter Duft nach Pfirsich und Aprikose. Leichte Reifenote, prägende Süße, kräftiges Mousseux. Spritzig mit angenehmen Trinkfluss, erfrischend säuerlich
147	Moussieren wird schnell weniger; Nase verhalten, leicht grüne Noten; Süße-Säureverhältnis gut eingebunden
148	Helles Strohgelb mit dezent grünlichen Reflexen; Etwas stumpf-mürbe Apfel-Quittenfrucht mit leichter Reifestruktur im Bukett und nussigem Würzeeffekt im Nachhall. Am Gaumen zeigt sich eine leicht unreife dünne Fruchtstruktur im Süßespiel mit etwas lascher Säurefrische.
149	2,5 P., Aroma: an gelbe Früchte erinnernd, Honignoten, Akazienblüte, bereits etwas gealtert; Geschmack: milde Säure, ausgewogene Süße-/Säurebalance
150	Aussehen: Blank, typisch; Geruch und Geschmack: Fruchtig, trocken, fehlerfrei, feinperlig
151	unauffällig, Geruch u. Geschmack leicht oxidativ
152	Der Angestellte Schaumwein ist nach den Kriterien Deutscher Qualitätsweinschaumwein , trocken (ohne Sortenangabe) für die AP geeignet. Die Laborwerte erfüllen die Anforderungen für das Geschmacksprofil trocken. In Farbe, Geschmack und Geruch liegen keine Fehler vor. Sensorische Bewertung sehr reif bis überreife Noten.
155	Der Sekt sehr fruchtig harmonisch rund
156	keine wesentliche Beanstandung
157	Sensorisch einwandfrei, sehr reife Frucht mit gelber Aromatik, reif-saftig im Geschmack, gute Länge mit anhaltender Perlage.Produkt entspricht auch analytisch den Anforderungen.

Probe FT20P01: Sensorische Befunde

7 Alphabetisches Verzeichnis der Teilnehmer

Name/Firma	PLZ	Ort
ABC-Labor GmbH Dr.Ralf Lutterbach u. Dr. Cornelia Schröder	54486	Mülheim
Adam Müller GmbH & Co KG	69181	Leimen
Affentaler Winzer eG	77815	Bühl
Ahr-Winzer eG, Betriebslabor	53474	Bad Neuenahr-Ahrweiler
Analytisches Labor Link, Niederlassung Rheinhessen	67551	Worms-Pfeddersheim
Analytisches Labor Link, Zweigstelle Weisenheim	67256	Weisenheim a.S.
Anton Paar Germany GmbH	73760	Ostfildern-Scharnhauser
Anton Paar GmbH	A-8054	Graz
Arauner Paul GmbH & Co KG	97306	Kitzingen/Main
AUSTRIA JUICE Germany GmbH	55411	Bingen
Badischer Winzerkeller EG	79206	Breisach
Bay. Landesanstalt für Weinbau und Gartenbau, Fachzentrum Analytik	97209	Veitshöchheim
Bayer. Landesamt für Gesundheit und Lebensmittelsicherheit	97082	Würzburg
Bundesamt für Weinbau	A-7000	Eisenstadt
Chemisches und Veterinäruntersuchungsamt Freiburg	79114	Freiburg
Chemisches und Veterinäruntersuchungsamt Stuttgart	70736	Stuttgart
Coop	CH 4133	Pratteln
Deutsch GmbH	65278	Hahnheim
Deutsches Weintor eG	76831	Ilbesheim
Dienstleistungszentrum Ländl. Raum - Rheinhessen-Nahe-Hunsrück	55276	Oppenheim
Dienstleistungszentrum Ländl. Raum - Rheinpfalz	67435	Neustadt/W.
Dienstleistungszentrum Ländl. Raum Mosel,	54470	Bernkastel-Kues
Abtlg. Oenologie und Kellerwirtschaft		
Drathen GmbH & Co KG	56856	Zell
Emil Wissing GmbH	76887	Bad Bergzabern
Fellbacher Weingärtner eG	70734	Fellbach
Felsengartenkellerei Besigheim eG	74394	Besigheim
Franz Stettner & Sohn GmbH	83059	Kolbermoor
Franz Wilhelm Langguth Erben GmbH & Co. KG, Abt- Qualitätssicherung	56841	Traben-Trarbach
Gebrüder Anselmann GmbH	67483	Edesheim / Weinstraße
Genossenschaftskellerei Heilbronn eG	74076	Heilbronn
Heim'sche Privat-Sektkellerei	67433	Neustadt/W.
Hochschule Geisenheim University	65366	Geisenheim
Institut f. Agrar- u. Umweltanalytik Dipl.Ing. Werner Bannach	06632	Freyburg / Unstrut
Institut i. Agrai- u. Omweitanarytik Dipi.ing. Werner Barinach Institut für Hygiene und Umwelt, Abteilung Lebensmittel II	20539	Hamburg
Institut Heidger KG	54518	Osann-Monzel
Jordan Analytik	97246	Eibelstadt
Julius Kühn Institut	76833	Siebeldingen
Keller Oenolab	55278	Dexheim
Keiler Gerlolab Klingler Weinlabor	71336	Waiblingen
Kingler Wernabor Kloster Limburg Weinhandel GmbH, Weinlabor Mittelhaardt	67098	Bad Dürkheim
KLUG Fachgroßhandel f. Kellereibedarf GmbH	55450	
		Langenlonsheim
Kost GmbH & Co KG, Zweigstelle Zell	56856 55450	Zell
Kost GmbH & Co. KG Lacher Laboratorium	55459	Aspisheim
Lacher Laboratorium Landesamt für Verbraucherschutz Sachsen-Anhalt	79238 06128	Ehrenkirchen
	00120	Halle/Saale
Landesuntersuchungsamt	EE120	Mainz
Institut ffür Lebensmittelchemie und Arzneimittelprüfung	55129	Mainz
Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen,	01217	Dresden
Sachsen		
Lehr- und Forschungszentrum für Wein- und Obstbau	A-3400	Klosterneuburg
Markgräfler Winzer eG	79588	Efringen-Kirchen
Möndel-Börtzler	67487	Maikammer
Niedersächsisches Landesamt für Verbraucherschutz und	00101	Durana alamaia
Lebensmittelsicherheit, Lebensmittelinstitut Braunschweig	38124	Braunschweig
Pieroth AG	55450	Langenlonsheim
PK-Weinlabor	67273	Weisenheim/Berg
Raiffeisen Lagerhaus Absdorf - Ziersdorf eGen Weinbaucenter Langenlois	A-3550	Langenlois
Reh-Kendermann GmbH Betriebslabor Bingen	55411	Bingen
Rheinberg-Kellerei GmbH	55411	Bingen
Rimuss & Strada Wein AG	CH 8215	Hallau
Rolf Willy GmbH	74226	Nordheim
	65343	Eltville
Rotkäppchen-Mumm Sektkellereien GmbH Sektkellerei Henkell & Söhnlein	65187	Wiesbaden

Fortsetzung: Alphabetisches Verzeichnis der Teilnehmer

67157 54294 79108 74189 79100	Wachenheim Trier Freiburg
79108 74189	Freiburg
74189	
79100	Weinsberg
	Freiburg
79418	Schliengen
67278	Bockenheim
97332	Volkach
55237	Flonheim
	Bönnigheim
	Brackenheim
	Weyher/Pfalz
	Weinstadt-
	Lonsheim
	Cochem
	Kaisersesch
	Engelstadt
	Mainz
	Bretzfeld-Adolzfurt
	Bernkastel-Kues
	Longuich
	Waldlaubersheim
	Neustadt/W.
	Deidesheim
	Kitzingen
	Edesheim Erden
	Kallstadt
	Bremm
	Bockenheim
	Osann-Monzel
	Landau
	Maikammer
	Saulheim
	Klüsserath
	Nittel
	Bad Neuenahr-Ahrweiler
	Wallhausen
	Eckelsheim
	Neumagen-Dhron
	Langenlonsheim
	Bodenheim
	Geisenheim
	Kröv
54536	Kröv
56814	Ernst
55543	Bad Kreuznach
55232	Alzey
55543	Bad Kreuznach
54346	Mehring
97318	Kitzingen
	Bernkastel-Kues
	Rhodt
	Kappelrodeck
	Hagnau
	Hahnheim
	Nierstein
	Möglingen
	Alzey
	Bechtheim
	Zell/Mosel
56856	Zell
บบดอบ	스타
	74357 74336 76835 71384 55237 56812 56759 55270 55129 74626 54470 54340 55444 67435 67146 97318 67483 54492 67169 56814 67278 54518 76829 67487 555291 54340 554453 53474 555595 55599 54347 555599 54347 55543 55543 55543 55543